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Abstract

This report summarizes some recent research results in robustness stability analysis for evolution systems

in IIilbert space. With applications such as the control of flexible structures in mind, a general framework is

chosen to include infinite dimensional systems and nonlinear, time-varying perturbations. The main result

of the report characterizes model perturbations that do not destabilize a nominal closed loop system in

terms of the passivity of the nominal system. Special cases of this result produces the generalization of the

absolute stability theorem, the hyperstability theorem and the circle criterion to evolution systems. When

tile perturbation is known to be linear and diagonal, different stability bounds are obtained depending on

Ihe signs of the perturbation elements. The directionality in the robustness margins provide possibility to

_-I.illst the nominal point of operation to enhance robustness. Robustness of nonlinear nominal systems can

al_o be analyzed by considering the nonlinear dynamics as perturbations. The synthesis problem associated

with tile passivity approach is shown to be identical to the Hoo-optimization problem. Based on the known

solutioa to the Hoo-optimization problem, we show a procedure for designing stabilizing finite dimensional

compensator for infinite dimensional systems. Several examples have been included to illustrate applications

of the theoretical results in this report.
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1. Introduction

This report addresses the following problem, defined as the robustness analysis problem, for the intercon-

nected system shown in Fig. 1:

Given a stable system 7",/hid a class of feedback systems, A, such that 7" remains stable

The situation we are considering is an openloop system with an external feedback compensation to ensure

satisfactory performance in the face of system and environmental uncertainties. The design of the feedback

compensation is usually based on an approximate model of the open loop system. If the modeling error

is treated as a feedback perturbation of the open loop plant, then we have the interconnection as in Fig.

1, where the forward system, 7", represents the nominal closed loop system (the model of the open loop

plant with the feedback compensation) and the feedback system, A, represents the modeling error. Possible

sources of modeling errors include unmodeled plant dynamics, instrument (sensors and actuators) dynamics,

parameter uncertainty etc.

Assume that T is modeled by an abstract evolution system on a real IIilbert space X:

_(t)=Ax(t)+Bu(t) , z(O)=zoEX

y(t) = Cz(t) + Du(t) (1.1)

The operator A : :D(A) C X ---, X, is the infinitesimal generator of a Co-semigroup , U(t). The operators,

B : R m _ X , C : X _ R m, D : a m ---, R m are all bounded.

The solution of (1.1), z(t), is considered in the mild sense [1]:

I'• (t) -- u(t) o + u(t - s)m,(s) d. (1.2)

The strong differentiability of z(t) is not imposed. Existence and uniqueness of x(t) will be considered later.

T is said to be exponentially stable if A generates an exponentially stable Co--"semigroup . x(t) ---, 0 as

l _ _ means that for all Xo E X, the state trajectory converges to zero in norm. x(t) ---, 0 exponentially as

t _ _ means that for all Zo E X, there exists M(Zo) E R such that the state trajectory satisfies the bound

II c(t)ll< M(zo)e -a'

In our robustness analysis problem, we assume 7" to be exponentially stable. We want to find a class of A

such that when A is connected to 7" as a feedback, z(t) ---, 0 as t ---, oo.

"l'he general framework of the abstract evolution system is chosen for the following reasons:

I. Many physical processes are naturally modeled as distributed parameter systems (DPS) that can be cast

iu the form of (1.1) . Large space structures [2], nuclear reactor dynamics [3, 4], process control systems

[5], time delay systems [6], are some examples.

This framework provides a global context to study convergence issues related to finite-dimensional ap-

proximation models and finite-dimensional compensators based on such models. It has been shown that

weak convergence (i.e., the rate of convergence, or, equivalently, the accuracy of the approximation, is

dependent on the state) of the gain can occur if proper care has not been taken in the approximation



procedure[7]resulting in high spatial frequency component and possible numerical difficulty in imple-

mentation. Loss of controllability and observability has also been noted if an ill-advised basis has been

selected for approximation [8].

3. In many applications, this framework provides a more efficient and physically meaningful parameterization

of the underlying system. Take a simple Euler-Bernoulli beam for example. The partial differential

equation (PDE) model contains only a few physical constants while a high order finite element model

incurs a great many more parameters. The robustness analysis problem is also more meaningful if posed

with respect to the physical parameters rather than their projections onto some approximation basis.

There have been many robustness analysis techniques proposed in the literature. They can be classified

as either frequency domain or time domain methods. In the former category, there are many classical

t,'chniques for single-input/single-output (SISO) systems by using, for example, the magnitude and phase

plots (Bode plot), Nyquist plot, Nicole's chart etc. For multi-input/multi-output (MIMO) systems, most of

th,_ methods are based solely on the gain information, for example, maximum singular values [9] (also known

as the principle gain [10] and Hoo-norm [11]) and # measure [12]. For complex, norm-bounded uncertainties,

these criteria are non-conservative. Stability conditions incorporating the phase information of 7" have been

stated in [10,13] but they do not translate to easily applicable rules. The time domain methods are mostly

based on Lyapunov analysis [14,15,16] or Kharitonov's Theorem (see [17] for an introduction). The former

studies the solvability of the Lyapunov equation under a perturbed system matrix. The latter deals with

the stability of polynomials with uncertain coefficients.

Most of these tools are rooted in finite dimensions and do not apply directly to our general setting. We

therefore propose a new robustness analysis technique that is applicable to evolution systems and bridges

both time and frequency domains. The stability analysis is performed in the state space by using the

L vapunov method, but the robustness margin is given by an index that is most conveniently computed from

tl,e transfer function. This allows us to prove state space stability by working only with a finite dimensional

transfer matrix. The main idea of our approach can be stated simply:

Characterize an acceptable class of A based on the degree of passivity ofT.

The motivation of the passivity approach is based on the following observations:

I. Flexible structures with colocated sensors and acturators are passive. They remain stable for any negative

feedback.

2. Passivity analysis is a cornerstone in the field of adaptive control. It is the passivity of certain closed loop

transfer function that provides the robustness with respect to the uncertainties in the parameters.

3. Passive systems provide a natural, energy-like Lyapunov function for stability analysis.

t. In the Lur'e problem, passivity is used to characterize systems that remain stable under sector bounded

feedback perturbations.

5. Passivity has been used in applications related to the control flexible structures. In [18,19], robust con-

trolh.'rs are designed to exploit the open loop passivity property (though the plant needs to be open loop

,_table). In [20,21], simple adaptive control strategies are devised based on the passivity principle.



6. In tile linear quadratic regulator problem (optimal quadratic regulator with full state information), it is

_,r [22,23].Thisknown that the closedloop system possesses[½,oo) gain margin and [ a, 3_] phase margin

fact ismost readilyseen by noting certaintransferfunction ispositivereal(seesection 10.1).

Our approach inapplying the passivityconcept to the robust stabilityanalysisproblem isto firststudy two

simpler,prototype problems, tileabsolute stabilityand hyperstabilityproblems, and then use to resultsfor

the more general situation. A system T described by (1.1) is called absolute stable if z(t) _ 0 exponentially

as t -, co for any feedback system, A, that is memoryless, nonlinear time-varying and non-negative. 7" is

called hyperstable if z(t) ---, 0 as t --- oo for any dissipative dynamical system, A (i.e., A satisfies the Popov

inequality; see section 2.2). 7" is called exponentially hyperstable if z(t) --* 0 exponentially for any A that

satisfies the exponential Popov inequality (see section 2.2). The absolute stability (resp. hyperstability)

problem is to find a class of 7" that is absolute stable (resp. hyperstable).

If 7. is finite-dimensional, it was shown [24,25], via the Kalman-Yakubovich Lemma [26,27,28] (also called

the Positive Realness Lemma), that strictly positive real systems are absolute stable. This result is called

the absolute stability theorem. In [29], strictly positive real systems are also shown to be hyperstable. This

is known as tile hyperstability theorem. These two theorems have proven to be invaluable tools in finite

dimensional system analysis with applications ranging from nonlinear control, adaptive control to robustness

analysis.

In finite dimensional analysis, positive realness is stated as a frequency domain non-negativity condition

of a transfer function. By using the Kalman-Yakubovich Lemma, the frequency condition is related to a set

of algebraic equations, which is called the Lur'e equations (this terminology is used in [30] for the Riccati

equation; here we use it to mean the equivalent set of equations in the Kalman-Yakubovich Lemma in [31]),

associated with the time domain parameters. A quadratic Lyapunov function with the interpretation of

energy [32] can be constructed from the solution of the Lur'e equations. The strict decreasing property of

tile Lyapunov function under dissipative feedback connection then leads to the absolute and hyperstability

theorems.

If the above Lyapunov method is applied here, a problem arises: The energy function associated with a

positive real system is not a true Lyapunov function candidate in general. As a result, energy decaying to

zero does not always imply internal (state space) stability. To circumvent this problem, our approach is to

first show L_ boundedness of the state trajectory from the Lyapunov analysi_ and then infer its asymptotic

convergence to zero by using a generalization of the Datko's theorem [33].

In contrast to tile finite-dimensional case, we define positive realness in terms of the solvability of the

Lur'e equations since it is used in to the stability analysis. Sufficient conditions in terms of input/output

properties and in the frequency domain (by using a ttilbert space generalization of the Positive Realness

Lcmma [30,34]) are also stated. The "closeness" of a system to positive realness can be characterized by

a scalar index, called the v-index for convenience, that is defined in either the time or frequency domain.

(The frequency domain u-index has been introduced in [18,19] in the context of controller design for flexible

structures.) Note that both gain and phase information of the system is captured by this index. The _,-index

can be computed from the finite dimensional approximation of the time domain parameters (the A, B, C, D

operators). We will show that the strong convergence of the approximate parameters implies the convergence

of the t,-index.

With the generalization of the Datko's Theorem and a suitable definition of positive realness, our Solution

of the absolute stability and hyperstability problems can be succinctly stated:



If the v-index of a system is negative, then the system is both absolute stable and hyperstable.

By using loop transformations, the absolute stability and hyperstability results are used to analyze stability

of more general systems. An acceptable class of A is related to the v-index of the transformed 7". This result

call be interpreted as a generalization of the circle criterion [24]. This generalization is similar to the past

results on tile circle criterion for evolution equations [35,36], but the internal (state space) stability result

and tile simple graphic test proposed here are unique to our approach. As a special case, we also recover the

small gain stability criterion based on the Hoo-norm.

Absolute stability and hyperstability for evolution systems in Hilbert space has been of considerable

interest in the literature [30,34,37,38,39]. Our stability analysis is different from the past approaches and our

framework allows more general systems, for example, systems with multiple inputs and outputs, dynamical

dissipative feedback systems, and systems that satisfy circle criterion. In particular, the absolute stability

results in [34,30] are special cases of the results here (see Section 5).

When A contains additional structure such as diagonality, the multiplier method [§VI.9 in 40] can be used

to improve the sharpness of tile robustness margin. Two types of multipliers are considered, corresponding

to tile Popov criterion and off-circle criterion. Finding the optimal multiplier within these classes is shown

to be globally convex, thus can be performed efficiently. For a more general class of multipliers, finding

the optimal multiplier involves a constrained optimization problem in the unit ball in L2(-oo, oo). We

propose an approximate finite dimensional solution by using an orthonormal basis for L2(-oo,oo), though

the numerical aspect of this approach remains to be explored. When A is both diagonal and constant, a

robustness margin can be computed for each quadrant of the parameter space. Specifically, if there are m

diagonal elements in A, then we can compute 2m robustness margins for each combination of the signs of

the diagonal elements. This directional robustness information may be useful in pointing to the direction to

change the operating point to enhance robustness.

For nonlinear 7"'s, there are two ways to find robustness margins. One can lump the nonlinear dynamics

with the perturbation A and then apply the results here. The bound in general will be conservative since the

knowledge of the nonlinear dynamics is not explicitly used. Ilowever, we are able to recover some stability

results on nonlinear systems that appeared in [41]. If the nonlinear dynamics is linear in input (i.e., linear

with respect to the output of the feedback system), then one may use the nonlinear definition of passivity

[42] directly. This avenue remains to be fully explored, however. -

Though most of the results in this report deals with the stability analysis problem, the passivity-based

stability criteria are useful in the robust control context, also. The problem of finding compensator to achieve

certain desired passivity in a specified input/output channel can be transformed to an equivalent Hoo-

optimization problem [43]. In the case of additive plant perturbations, an analytic bound of the achievable

_,-index with respect to the additive channel can be derived. A stabilizing compensator can then be designed

by solving the Nehari problem (the so-called one-block problem [44]). This approach is similar to that in

[45], except a passivity-based stability criterion is used instead of the small gain criterion. Our result has

the interesting feature that only the unstable portion of the open loop plant, denote it by Pu, needs to be

modeled for the compensator design (resulting in a low order compensator), if the minimum Ilankel singular

value of P_ is sufficiently large. Application of this result to infinite dimensional evolution systems results in

a design algorithm for stabilizing finite dimensional compensators. The numerical aspect of this algorithm

has not yet been fully explored.



Following examples are provided to illustrate various aspect of the robustness analysis tools discussed in

this report:

1. Robustness of the linear quadratic regulator (with full state feedback) and linear quadratic gaussian

controller from the passivity viewpoint.

:2. Stabilization and _,-index computation for the heat equation.

3. Two diagonal perturbation problems.

4. Three examples on the use of multipliers

The report is organized as follows. Section 2 defines positive realness in Hilbert space and states various

time domain, frequency domain and input/output space conditions for positive realness. Some important

lemmas needed for stability analysis in llilbert space are given in section 3. Sections 4 and 5 present the

infinite dimensional version of the absolute stability and hyperstability theorems, respectively, and their

generalizations. Section 6 applies the absolute stability and hyperstability results to the robustness analysis

of sector-bounded perturbations. Connection is drawn between sector-bounded perturbation and pertur-

bation with norm upperbound and innerproduct lower bound. Application of the multiplier technique to

diagonally structured feedback systems is discussed in section 7. Section 8 examines the robustness analysis

for nonlinear systems. Synthesis by using the Hoe optimization method is discussed in section 9. Stabilizing

finite dimensional compensator design for evolution systems is presented as a special case. Finally, several

examples are given in section 10 to illustrate application of the passivity approach to robustness analysis in

this report. Proofs of the main results are included in the main text. Proofs of supportive results are given

in tile appendix section.

Tile usual notations of > 0 and > 0 are used to denote positive semidefiniteness and positive definiteness

of matrices, respectively. The symbols ,_mi,(A), /_min(A) and _rmin(A ) are defined as the minimum matrix

eigenvalue, minimum eigenvalue of symmetrized A (i.e., _(A + AT)) and minimum matrix singular value,

respectively. A coercive operator means a positive operator that is also bounded invertible in the space

under consideration. The notation >>0 is used for coercivity. The space in which norms and inner products

are taken will not be noted explicitly; the interpretation is inferred from the arguments. The truncated

L2 space, L2([0, t]), is denoted by L2,. The inner product and norm in L2, is denoted by (.,-), and II'll,,

respectively. We say z E L2,, the extended L2 space, if x E L2, for all t E [0, oo).

The space of bounded linear operators from a Itilbert space g to a llilbert space Y is denoted by/_(X,Y)

and £(X)_E(X, X). A Co-semigroup U(t) is said to be exponentially stable if there exists M > 1 and o"> 0

such that

IIU( )ll _<Me-*' (1.3)

We say (A, B) is exponentially stabilizable and (A, C) is exponentially detectable if there exist G and K

such that A + BG and A + KC generate exponentially Co-semigroup, respectively. For an introduction to

the Co-semigroup approach to the study of evolution equations, see for example [1,46,47].

2. Positive Realness in Hilbert Space

The stability results in this paper are based on the positive realness of linear time invariant systems. We

first define positive realness in terms of the state space parameters and then draw connections to conditions



ill terms of input/output signals and the frequency domain transfer function. The state space definition is

useful in tile later stability analysis. The frequency domain condition is convenient for computation due to

the assumed finite dimensionality of the input/output spaces. The input/output condition relates positive

real systems to general passive systems defined by Popov inequality.

We will introduce the u-index to characterize "the degree of positive realness" (in a loose sense) of a

given system. Tile u-index is defined via the state space parameters but can be equivalently, and more

conveniently, computed in the frequency domain.

2.1 Time Domain Definition of Positive Realness

We define strict positive realness, positive realness and almost positive realness for 7" in terms of the state

space parameters.

Definition 1. Consider an exponentially stable system T given by (1.1). If there exists e > 0, P • £(X),

Q • £(X, R'n), W • R mxm, such that

(A*P + PA + eI+ Q*Q)z = 0 for all z • 2:)(A) (2.1a)

B*P = c- W'Q (2.1b)

W'W = D + D* , (2.1c)

then 7" is said to be strictly positive real.

If (A, B, C, D + dI) is strictly positive real for all d > 0, then T is said to be positive real.

If (2.1) hold with e = 0, then 7" is said to be almost strictly positive real.

Equations (2.1 a-c) are called the Lur'e equations associated with (1.1) .

Remarks:

1. Equation (2.1a) is called the Lyapunov equation. It has been written in an algebraic form as to draw

analogy to the finite-dimensional case. The solution can be equivalently and more conveniently written as

Px = U*(rl)(eI + O*Q)U(rl)x d_ (2.2)

We now show that this integral is a well defined Bochner integral [46,§V.5-6]. Since 23(A) is dense in zz [1,

Corollary 2.5], given x • X, for all e > 0, there exists z • _(A) such that I]x - zl[ < e. Now, for z • :D(A),

U(t)z is continuous in t [1, Theorem 2.4]. Therefore, (w,U(t)z) is Lebesgue measurable for all w • X,

mcaning that U(t)z is weakly measurable [46, Definition V.4.1]. If we assume X is separable, then Theorem

V.4 in [46] can be used to conclude that U(t)z is strongly measurable which means that it is the strong

limit of a sequence of X-valued simple functions in [0,co). Combining the above arguments, we conclude

that U(t)z is also the strong limit of a sequence of simple functions. Hence, U(t)z is strongly measurable

[46, Definition V.4.1]. By an identical argument, we can show that the integrand in (2.2) is also strongly

mea._urahle. Since U(t) is an exponentially stable Co--semigroup , the norm of the integrand is integrable.

By Theorem V.5.1 in [46], it follows that the integral in (2.2) is a well defined Bochner integral.



Tileexponentialstability of U(t) also implies that P given in (2.2) is a bounded operator. Furthermore,

it is a unique solution of (2.1a) [34, Lemma 1]. Since el + Q'Q is coercive, P is positive [34, Lemma 1].

Ilowever, P is coercive if and only if A generates a Co -group [48]. The Co -group assumption holds in

finite dimensions but is restrictive for infinite dimensional systems, for example, the heat equation and the

damped wave equation (with tile damping term of the form 0to-/_=) do not generate Co -group. Therefore,

we will not impose this requirement.

2. Unlike its finite dimensional counterpart, Definition 1 is stated in the time domain rather than the

frequency domain. This is a reasonable choice since only Lur'e equations are used in the stability analysis.

Tile frequency domain condition, which will be discussed below, can be considered as a practical way to

verify tile positive realness property.

3. Associated with the Lur'e equations is an energy function

V(x)_ (Pz, z) (2.3)

We will use this energy function extensively to deduce stability properties of the interconnected system in

Fig. 1.

In the definition below, we introduce an index that characterizes the "degree of positive realness" for

systems of tile form (1.1) .

Definition 2. Tile u-index of a linear time invariant system given by (2.1) is defined as

v(T) - inf{A E R : (A, B, C, D + AI) is strictly positive real }

Tile relationship between v-index and positive realness is an obvious one.

Fact 1. Given an exponentially stable system 7" as in (1.1) , u(T) _< 0 if and only if 7" is positive real.

2.2 Relationship between Positive Realness and Input/Output Conditions

It is well known that finite-dimensional positive real systems satisfy an input/output dissipativity condi-

tion, called the Popov inequality [49,50]. We will show in this section that a similar relationship also exists

for systems described by (1.1) . First, we define the Popov inequality and the exponential Popov inequality.

Definition 3. A dynamical system with input u and output y is said to satisfy the Popov inequality if

there exists a positive constant _ such that for all t _> O,

' Yr (s)u(s) ds (2.4)>_

The system is said to satisfy the exponential Popov inequality if there exist positive constants, _ and 7 such

that for all t _> 0,

> -¢ (2.5)e'ts yT (s)u(S) ds



For a physical motivation of how the Popov inequality relates to passivity, consider a network with voltage

,as input and current as output. The total energy delivered to the network from time 0 to t is fouT(s)y(s) ds

[32]. If tile network has zero initial energy and satisfies the Popov inequality, then energy is always delivered

to tile system; hence, the network either conserves or dissipates energy, or, is, in other words, passive.

To show tile connection between tile Popov inequality and positive realness, we shall need the continuous

differentiability of the energy function (2.3) along the solution trajectory (1.2) , a sufficient condition for

which is stated in tile following lemma.

Lclnma 1.

and V as defined by

Given x(t) as in (1.2) , U(t) exponentially stable (i.e., U(t) satisfies (1.3)), P defined by

for allzEX , R>0 ,e. = u'(s)Ru(s),as

V = (V.,.)

If t4 E L_.,, then V(x(t)) is differentiable in t for all t E [0, oo) and I>zx dV(z(t))= dt is given by

f/(t, x(t)) = - (Rz(t), z(t)) + 2 (eBu(t), z(t))

(2.6)

(2.7)

Proof: Tile proof is given in Appendix I .

Tile relationship between positive real systems and their input/output properties can now be stated:

Proposition 1. Given 7" as in (1.1) , assume that the input is in the extended L2 space, i.e., u E L2,.

Then the following statements are true:

1. If 7- is almost strictly positive real then 7" satisfies the Popov inequality.

2. If 7- is strictly positive real then 7" satisfies the exponential Popov inequality.

P t.o of-"

1. Let V(x) be defined as in (2.6) .

By Lemma 1, V(z(t)) is differentiable along the solution and I)" is given by: (Note that V does not depend

on t explicitly, but I)" may depend on t due to the external input u(t).)

_'(t, z(t)) = - (O*Ox(t), z(t)) + 2 (eBu(t), x(t))

(by (2.1a) withe=0)

= - IIO.(t)ll_+ 2 (u(t), C.(t)) - 2 (QWu(t), z(t))

(by (2.1 b) )

= -IIQ.(t)ll _ + 2 (u(t), y(t)) - IlWu(t)ll2 - 2 (Wu(t), Q*z(t))

(by (2.1)and (2.1 c) )

= 2 (u(t), y(t)) - IlO*(t) + Wu(t)ll _

< 2 (u(t), y(t))



Integrate both sides from 0 to t, then

/o' d, = -

> -_v(_(o))

Ilcnce, 7" satisfies the Popov inequality.

2. Let V(I, x) -- e "it < Pz, x >. From part 1 of the proof, the derivative of V along solution is

k'(t, x(t)) = 7V(t, z(t)) - e "yt IIQz(t) + Wu(t)ll a - _e_' IIz(t)ll2 + 2e "rt (u(t), y(t))

<- -( I-_ - 7)V(t, x(t)) + 2e"Yt(u(t), y(t))

Choose 7 so that 0 < 7 < _. Then

l/(t,z(t)) < 2e "Y'(u(t),y(t))

By integrating both sides of the inequality, it follows that 7" satisfies the exponential Popov inequality.

2.3 Relationship between Positive Realness and Frequency Domain Conditions

Except for special cases, the Lur'e equations are difficult to verify for a given system even in finite

dimensions. Infinite dimensionality only compounds the problem. On the other hand, the finite, though

possibly irrational, frequency domain transfer matrix is more amenable to computation, both numerically

and experimentally. In this section, we will use the Hilbert space version of the Positive Realness Lemma to

derive frequency domain conditions for positive realness. The generalization of the Positive Realness Lemma

to Ililbert space was first done in [30] and later restated in [34]. To state the result here, consider a quadratic

form F defined on tile lIilbert space X x R'n by

F(z, u) = (F,z, z) + 2Re (F2z, u) + (Fau, u) ,x • X, u E R m (2.8)

where F] (5 £(X) and F3 E R mxm are self-adjoint and F_ E £(X, Rm). For complex vectors z and u, inner

product and tile linear operators in (2.8) are interpreted in the corresponding complexified spaces [34].

Specifically, given zc, = zi + jYi, i = 1,2, zi, Yi, are elements in a real Hilbert space, the inner product

between z¢, and zc2 is defined as

<_:_,,zo,) = (<x,,+2)+ (y,, y2>)+ J((yl, x+) - (::_,y2))

and the complexification of a linear operator E as

Ezc_ = Ezt + j Eyl

We first state tile llilbert space version of the Positive Realness Lemma in the same form as in [30,34].
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Theorcm 1. [30,34]

Consider an exponentially stable evolution system in a Hilbert space, 7", as described by

some 6 > 0,

F((j_t - A)-' B_, z) _>_6 llzll', for all z E R',_a E R ,

then there exist II E t'(X), H self-adjoint, and h E _(X, R m) such that

2(Az+Bu, Hx)+F(z,u)= IIFs½(u-hx)ll _, for all (z,u) E_(A) x R m

h = -Fa-t(B'H+F2)

(1.1) . If for

(2.9)

(2.10)

(2.11)

To p,t Theorem 1 in a form suitable for our use, we need to first make the following observations. By

the Laplace transform identity [1],

(jto[ - A)-lz = e-J'_'U(t)z dt (2.12)

An exponentially stable U(t) implies that U(t)z E Lt([0,oo); X). Hence, by the Riemann-Lebesgue Lemma,

(jtoI - A)-lz -- 0 as to --- oo. Therefore, (2.9) implies that F3 is a positive definite matrix. By taking the

norm of both sides of (2.12) , it is straightforward to show that

M
II(JtoS- A)-III < -- , (2.13)

0"

where M and 0" are related to the exponential bound of IIU(t)ll, as defined in (2.3).

We can now state Theorem 1 in a form that relates a frequency condition to strict positive realness.

Corollary 1. Given an exponentially stable system 7" as in

representation of 7":

T(jw) _-D + C(jwl - A)-I B

If there exists e > 0 such that

Re (T(jta)z, z) >_, II_II2

for all z E C m and to E R, then 7" is strictly positive real.

Pl'oo_

e/2
Let 0 < r/< _, then the above

F1, F_, Fz in F are given by

(1.1) , let T be the transfer function

(2.14)

(2.15)

Equation (2.15) can be manipulated as follows:

2Re (C(jwI - a)-t nz, z) + 2 (Oz, z) >_ 2e I1_11_

-r/II(J_/- A)-_Bzll _ + 2Re (C(jtoI - A) -1Bz, z) + 2 (Dz, z) > 2e Ilzll' - o II(JwI - A)-' Bzll _

M z

___(2, - 0-_- IIBII"_)Ilzll2

(by (2.13))

inequality implies that f((jtaI - n)-tBz, z) >_ ,5 Ilzll z, 5 > O, where

FI = -OI , F2 = C, , Fz = D + D T

10



Then by Theorem 1, there exists H and h such that (2.10) and (2.11) are satisfied. As noted earlier, F3 > 0,
therefore, D -I-D T can be factorized as

D + D T - WTW ,

which is (2.1c). Now, by setting u = hx in (2.10), we have

0 = ((HA + A'g)x,a:) + 2uT(B*H + C)x - r/[[x[[_ + [[Wu[[ 2

= ((HA + A'H)x,x) - IlWh=ll2 - ,711=112, for all z E D(A) (2.16)

(from (2.11))

Define P, Q as follows

P = -H , Q = -Wh

Then (2.16) implies (2.1a). Equation (2.11) can now be written as

B'P- C = w'rwh = -WrQ ,

which is (2.1b). Since the Lur'e equations have a solution, 7" is strictly positive real.

In section 2.1, tile v-index has been introduced as a time domain distance measure (in a heuristic and not

a rigorous mathematical sense) of a system to positive realness. Based on the frequency coercivity condition

(2.15) , a frequency domain measure of positivity can be defined as the uniform lower bound of T. This

quantity is defined below as the ur-index.

Definition 4. The realness function of a complex-valued matrix T(s) : Cm --* Cm analytic in the closed

right half complex plane is defined as

[RF(T)](w) = inf Re (T(jw)z,z) (2.17)
zEC m
I1 11= x

Negation of the infimum of the realness function is defined as the vF-index :

vt.(T) = - in([RF(T)](w) (2.18)
_ER

At each w, [RF(T)](w) can be easily computed:

[RF(T)](ta) = pmin[T(jw)]

If T(jw) is a scalar, then

= Amin fl (T(jw) + T*(jw))]
(2.19)

[RF(T)](w) = Re T(jw)

We shall also need the definition of Hoo-norm. Let T(s) be a complex valued matrix, analytic in the closed

right half complex plane. Then

IlTIlu.._sup IIT(jw)ll_ , (2.20)

where II-II denotes the matrix 2-norm.

If T(jw) is defined by (2.14) , it is easy to show that it is uniformly bounded and continuous in w [40].
llence, vr(T) is well defined.

Some useful properties of vr are summarized below.

11



Fact 2. Let G , H , F be m x m proper transfer matrices for exponentially stable systems of the form

(1.1) . Then the following statements are true.

1. VF(CI) = --c , C = constant

e, vF(G) ifa > 02. vr(o,G) = -cwr(-G) ifo, <0

3. vF(C+ H) <_VF(C) + vF(H)

4. VF(CI + G) -" PF(G) - c

5. vF(C) < IIGIIH..

vr(-a) _<IIGII-.

6. Gstrictly proper implies vF(G) > 0

(Strict properness of G means liml,l_oo G(s) ---* 0 .)

7. If the internal parameters of G are (A, B, C, D), then vF(G ) < 0 ::_ D > 0

8. vF(K'GK) <_ vF(G)a2min(K) for any complex matrix K

1
9. If _(G + G') = H'FH, thenvF(G) _< vF(F)infa_i.(H(jw))

10. sup vF(GK)- sup vF(KG) = IIGIIH.= sup
K unitary g unitary K,,K2 unitary

11. If G is block diagonal with square diagonal blocks {Gi}, then

vF(O) = max vr(Gi)

vF(K;GK2)

12. vr is Lipschitz continuous in the H¢o norm topology with Lipschitz constant = 1

Proof: The proof is given in Appendix II .

Tile most useful aspect of the vr-index is its connection to positive realness and the v-index. This result

is summarized below.

Proposition 2. Given an exponentially stable system 7" as described by (1.1) . Let T(s) be its transfer

function. The following statements are true.

1. If vF(T) < 0 then 7" is strictly positive real.

2. [[ 7" is strictly positive real and D > 0 then vF(T) < 0.

3. T is positive real if and only if vF(T) <_ O.

4. If 7" is almost strictly positive real then vF(T) <_ O.

5. vF(T) = v(Y).

Proof:

1. This fact follows from Definition 4 and Corollary 1.

12



2. Assume T is strictly positive real. Compute the Hermitian part of the transfer function as follows:

T(jw) + T'(j_a)

=D + D T + C(jwI- A)-IB + B*(-jwl- A*)-IC *

=wTw + (B*P - WTQ)(jwI - A)-tB + B*(-jwI - A*)-I(PB - Q'W)

( by (2.1c))

=wTw + B*(-jwl - A*)-' [(-jwZ - A*)P + P(jwl- A)] (jwI- A)-IB

-- WT Q(jwI- A)-I B - B'(-jwZ - A*)-tQ*W

=WTW + B*(-jwl - A*)-I(Q*Q + tl)(jwl - A)-IB - wTQ(jwI - A)-IB - B*(-jwl - A*)-IQ*W

( by (2.1a))

=(W r - B'(-jw l - A*)-IQ*)(W - Q(jw l - A)-I B)+

_B'(-jwl- a*)-l(jwI - A)-'B > 0 (2.21)

This implies uF(T) < O. Assume uF(T) -- O. Then there exist {un} C C m, II==ll= 1, and {wn} such that

1
0 < ((T(jw.) + T'(jw.)) u.,u.) < - (2.22)

n

We firstshow that {w,,}isa bounded sequence. Assume the contrary,i.e.,assume some subsequence w,,_ oo

as n _ co. Then the inner-product in (2.22)converges to (Dun, u,_)and itsupperbound converges to zero.

Since D > 0 by assumption, thisisa contradiction.Hence, {un} and {wn} are both bounded sequences and

thereforecontain convergent subsequences {unh} and {w,_}. Let theirlimitsbe uo and Wo. Then

((T(jw°) + T*(jw°) ) Uo, Uo) = 0

It follows from (2.21) that

Wuo - Q(jwol - A)-l Buo = 0

(jWoI - A)-l Buo = 0

Substituting the second equality into the first yields

Wu, = 0 (2.23)

By assumption, D > 0, which implies W > 0; hence, (2.23) implies Uo - 0. This is a contradiction, since

]]ltnj, H "- 1 and unh "" Uo. It follows then uF(T) < O.

3. Assume ur(T) <_ O. The transfer function of (A, B,C, D + AI) is T(jw) + AI. By part 4 in Fact

2, ut:(T + AI) < 0 for all A > 0. Ilence, T is positive real by Definition 2 and part 1 of this proposition.

Now assume T is positive real. By Definition 2 and part 2 of this proposition, there exists a monotonically

decreasing sequence {r/n}, r/n > 0, such that for all z E C m,

1
z'(T(jw) + T*(jw) + n)Z >__qn I1 11

As n ---- oo, r/. --- r/> 0 and _ ---. O. llence,

z*(T(jw) + T'(jw))z >_ 0 ,

13



forallz E C 'n.This impliesthat vr(T) <_O.

4. Assume i2.1)holds with e = 0. Then vF(T) <_0 followsfrom (2.21)in the proof of part 2.

5. First note that an exponentially stable system remains exponentially stable with any constant

feedforward. From part 4 in Fact 2, vF(T + uFiT) • I) = 0. This implies 7" + uF(T) • I is positive real by

part 3. By Fact 1, P(T + uriT) • l) <_ O. It is easy to show that viT + rE(T). I) = v(7") - vriT). Hence,

vCT) _< vriT).

Tile reverse inequality follows from:

t/i T) • I + T is positive real (by Definition 2).

=_,t/Fit/(T) . I + T) <. 0 by part 3.

_t/F(T) - t/iT ) <_ 0 by part 4 in Fact 2.

=_t/p(T) _< t/(7")

Combining tileresults above, we have t/(T) = t/r(T).

In the transfer matrix representation of system (1.1) , the {i,j} element of the transfer matrix is

(ci, (j_ [ - A)-lb_). The computation of the vF-index then involves solving an integro-differential equation

of tile form

(joaI- A)z = b ,zErO(A) ,

for some given finite set of b's E X and for each w. An approximate numerical solution can be used to obtain

an estimate of tile t/r-index. Another approach is to approximate T with some finite dimensional system

and compute ttm t/F-index of the approximate system. The following result relates the convergence of a

sequence of such approximate systems to the convergence of their t/r-indices.

Proposition 3. Suppose the internal parameters (A, B, C, D) are approximated by (An, B,_, Ca, Dn)

where A,, is exponentially stable for each n and An ". A, B,, --* B, C,, --* C and D,, _ D strongly (since

the input/output spaces are finite dimensional, the convergence of B, C and D are actually in norm). Let

T, be the transfer function associated with iA,,, B,,,C,,,Dn). Then RF(Tn)(_) _ RF(T)(,_) uniformly for

all w E fl where f2 is any compact" set in R, as n _ co.

Proof: The proof is given in Appendix lII .

By selecting a frequency range f2 = l-N, N] for N large enough, infn RF(T)(w) can be made arbitrarily

close to vr(T). Then by Proposition 3, infn RFiT,,)iw ) will converge arbitrarily close to t/r(T), also. Hence,

in practice, an approximation of t/FiT) can be obtained by constructing a sequence of approximate systems

{T,_} (perhaps finite dimensional) whose vF-indices can be more easily computed. An example comparing

these two approaches of computing t/riT) is discussed in Section 8.

2.4 Finite Dimensional Positive Real Systems

Stronger connections between various state space, input/output and transfer function conditions on pos-

itive realness can be shown for finite dimensional systems. First we restate a theorem from [51] which
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provides a list of related conditions on strict positive realness. These conditions can be organized into three

tiers of necessary and sufficient conditions of increasing strength. In the top tier are the frequency coercivity

condition and two input/output coercivity conditions. They imply strict positive realness, and if D > 0,

they are in fact equivalent. The second tier, which is implied by the top tier, consist of two state space

conditions involving particular forms of the Lur'e equations, two frequency domain positivity conditions and

two input/output conditions one of which is the exponential Popov inequality. They all are sufficient for

strict positive realness and are necessary when D = 0. At the bottom tier lies a lone frequency positivity

condition which has been erroneously stated in [50,32] as a sufficient condition for the solvability of the Lur'e

equations. It is weaker than the previous two, but does not imply strict positive realness in general.

Theorem 2.

Let 7" denote an exponentially stable linear time invariant system with state space parameters (A, B, C, D)

and transfer function T(s). Assume O'min(B) > 0. Consider the following statements:

1. 7" is strictly positive real.

I'. Same as 1. except L is related to P by

L = 2.V (2.24)

for some p > O.

2. There exists ,7 > 0 such that for all w E R

T(jw) + T'(flo) >_ ,11 (2.25)

3. For allw£R

T(jw) + T'(jw) > 0 (2.26)

4. For allwER

and

T(jw) + T*(jw) > 0 (2.27a)

lim w2(T(jw) + T*(fia)) > 0 (2.27b)
t*.* _ CO

5. The system T can be realized as the driving point impedance of a multiport dissipative network.

6. The Lur'e equations with L -- 0 are satisfied by the internal parameter set (A+pI, B, C, D) corresponding

to T(j_ - p) for some t_ > 0.

7. For all w £ R, there exists p > 0 such that

T(jw - p) + T*(jw - p) >_.0 (2.28)

8. There exist positive constants p and _ such that for all T > 0

// //uT(t)y(t) dt >__ + p

15
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9. There exist positive constants 7 and _, such that for all T >_.0

fo z e"ur (t)y(t) dt > (2.30)

10. There exists a positive constant a such that the following kernel is positive in L2(R+; Rmxm)

K (t - s) = D6(t - s) + Ce(A+aD('-') B.l(t -- s) (2.31)

where 6 and 1 denote the Dirac delta function and the step function, respectively.

11. The following kernel is coercive in L2([0, 7"];RmXm), for all T.

K(t - s) = DS(t - s) + CeA(_-')B.l(t - s) (2.32)

These statements are related as follows:

(1)

(2) (8) (11)
(if D > O)

(1')

(if D = 0)

(3)

(4)_==_(5)_==_(6)_:_(7)¢:==_(9)_=_(10)

Proof: The proof is given in Appendix IV .

For SISO systems, condition (4) has been noted to be necessary for condition (5) [25] and later shown to

be necessary and sufficient in [52]. Condition (8) was termed u-strictly-passive for nonlinear systems in [42].

For finite dimensional systems, Definition 1 is non-standard. At present, there appears to be no consensus

in the literature on the definition of strict positive realness. Condition (3) has been used as a definition for

strict positive realness [50,32]. As seen in Theorem 2, it is in general too weak to be used for stability

analysis. In [52], condition (5) was used as the definition for strict positive realness. If a frequency domain

definition of strict positive realness is sought, condition (4) is a reasonable choice. Condition (7) was used

by [25] as a definition for strict positive realness for both SISO and MIMO systems. This choice is not as

appealing as condition (4), as it depends on an unknown constant # (see (2.28)).

If the frequency condition (2.25) is satisfied, then Theorem 2 states that the Lur'e equations (2.1)

associated with T has a solution, llow do the constants, r/in (2.25) and t in (2.1) , relate to each other?

This question is important because e determines tile rate of convergence in exponential stability results in

the later sections but it is more difficult to obtain than q. Following corollary provides an answer.
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Corollary 2. Suppose condition 2 in Theorem 2 holds. Define

Tl (jw) _:C(fia [ - A )-I B

Then condition 1 holds with

L = el + 7cTc

where • and 3' are any positive constants that satisfy

(2.33)

and

(2.34)

< '1 (2.35)
IIT II .

, < o- 7 IITtll . (2.36)
II(J,d - A) -1BII .

Proof: Tile proof is given in Appendix V .

A list of equivalent conditions can be stated for finite dimensional positive real systems as in Theorem 2

Ca similar list is also given in Theorem B.2.1 in [50]). We will sacrifice some generality by requiring T to be

exponentially stable. The full generality can be obtained by incorporating the lossless real lemma [53].

Proposition 4. Given an exponentially stable LTI system T with an internal parameter set (A, B, C, D)

and transfer function T(s). The following statements are equivalent:

1. 7" is almost strictly positive real and P that solves the associated Lur'e equations is positive definite.

2. For allwER

T(jw) + T'(jw) >_0 (2.37)

3. 7- can be realized as the driving point impedance of a multiport passive network.

4. There exists a constant _, such that for all T > 0,

_0 T uT(t)y(t) > _,
dt (2.38)

5. The following kernel is non-negative in L2(R+; R re×m)

K(t - s) = D6(t - s) + CeA('-')B. l(t - s)

6. T is positive real.

Proof: Tile proof is given in Appendix VI .
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3. Useful Lemmas

Two technical lemmas needed for later stability analysis are stated in this section. The first lemma

generalizes Datko's theorem [33] to systems described by (1.1) with the input u E L2([0,oo); Rm). The

second lemma relates the negativity of the derivative of the Lyapunov function to internal stability. These

two results form a powerful combination that enables one to show stability without using a coercive operator

in the Lyapunov function.

The L2-boundedness of the state trajectory, z(t), is equivalent to the internal exponential stability in the

zero input case [33]. The next lemma generalizes this result by showing z(t) _ 0 as t ---, oo when the input

is in L2.

Lemma 2. Given z(t) as in (1.2) :

I'x(O = u(t)_o + u(t -.)Bu(s)ds ,_o E X ,

Assume u E L2([0,oo); Rm). If for every _:o E X, there exists K(zo) E R such that

f0 ° _<K(_o) oo ,IIz(s)ll=ds <

then

1. U(I) is an exponentially stable Oo--semigroup , and

2. Ilx(t)ll - 0 as t -- co for all z0 _ X.

(1.21

Proof: The proof is given in Appendix VII.

As stated before, unlike the finite dimensional case, P that solves the Lyapunov equation (2.1a) is not

bounded invertible in general. This means that the norm induced by the inner product (z,y)t _- (Pz,y) is

weaker than the underlying norm of tile state space. Hence, convergence in [['lit does not imply convergence

ill tile natural norm. This prevents a direct application of the standard proofs for the absolute stability

and hyperstability in the finite dimensions where the quadratic form, (Pz, z) = Iizil_ is used as a Lyapunov

function candidate. This problem is avoided by introducing a lemma below which relates Lyapunov type of

analysis to internal stability without requiring the hounded invertibility of P.

Lemma 3. Given z(t) as in (1.2) . Define V(z)_ (Px,z) for some P > 0 and bounded. Assume for all

Zo E X, V(x(t)) is differentiable in t and there exists e > 0 such that

v(t, x(t)) _<-_ IIz(t)ll2 (3.1)

Then for all a E [0, _e IIPII-_) and zo E X, the following statements are true:

1. If u(t) E L2([0, oo); Rm), then z(t) --* 0 as t --* oo.

2. e°'x(t) e L2([O, oo);X).

3. If eatu(l) E L2([O,oo); R), then z(t) ---, 0 exponentially with decay rate _r as t ---, co.
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Proof: Tile proof is given in Appendix VIII.

4. Absolute Stability

Ill this section, we will show tile following generalization of the finite-dimensional absolute stability

theorem: v(7") < 0 :=_ T is absolutely stable. This result can be considered as an extension of the passivity

theorem [40], which says two interconnected passive systems are input/output stable, to internal state

space stability. By applying the absolute stability theorem to 7" and A after simple loop transformations

(feedforward and feedback of both 7" and A by constant systems), we show that an interconnection of sector

bounded 7" and A is stable. Tile interpretation of this result as a Hilbert space version of the circle criterion

[2.t,35,36,40] will be given in Section 6.

To ensure wellposedness of the interconnected system, the following technical assumption is made through-

out this section.

Assumption 1. Given the interconnected system in Fig. 1. Assume that there exists a unique solution

u of

. = -:,(t,c=+ D.) , (4.1)

forevery t _>0 and z E X. Define Al as the solutionoperator

u = -_(t,c=) (4.2)

Assume A1 is bounded uniformly in t, for t in bounded intervah, continuous in t and locally Lipschitz

continuous with respect to Cz.

Tile uniqueness of solution assumption in Assumption 1 is needed to remove the possibility of a multi-

valued map from Cx to u, for such generality is not addressed in this paper. The boundedness, continuity

and local Lipschitz conditions on Al implies that a unique mild solution of the interconnected system exists

for all t such that x(t) is bounded [1, Theorem 6.1.4.]. We will discuss below a condition on A that will

assure these required properties on A I.

If A is bounded uniformly in t, for t in bounded intervals, and continuous in t, it is easy to see that the

same properties hold for Al. Suppose A is locally Lipschitz in the second variable, i.e., for every T > 0 and

constant e > 0, there is a constant L(c, T) such that

IlA(t,z,) - A(t, z2)ll <__L(c,T)I1=, - z=ll

holds for all zl, z2 E R m with I1=,11< c, 11=211_<c and t E [0,7"]. Let ui = At(t,Czi), i = 1,2, then for every

T > 0 and c > 0, we have

Ilul - u211

= II:,,(t, C=,) - A_(t,C=2)ll

= II:,(t, C=, - O,,,) - A(t,Oz= - D,,2)II

<_L(c,T)(IIC=, - C==II+ IIDIII1", - "=11) (4.3)
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rot, _ [o,T], IlCx,- Du,II< c,i = 1,2.Given IlOx,II_<cx,c_> 0, there exists c such that IlOxi- Du,II< c
if

IIAII IIDII < 1 (4.4)

where

IIn_0,=)llIlzXll_sup sup
,eR,eR" I1=11

Condition (4.4) implies A(t,0) = 0 and also guarantees a unique solution of (4.1) , but it is not necessary.

Now, if

L(c,T) IIDII < 1 (4.5)

for all T > 0 and c >_ 0, then (4.4) is satisfied and the local Lipschitzness of Al follows from (4.3) . In

many situations, 7" is strictly proper, i.e., D = 0, then the condition for the wellposedness of solution can

I)e placed on A directly.

The following lemma states that the non-negativity of A implies x and u E L2o, which is needed for the

differentiability of V along the solution trajectory.

Lemma 4. Consider the interconnected system in Fig. 1. Assume D > 0 and yTA(t,y) >. 0 for all

t >_ 0 and y (/ R'. Let u be the unique solution of (4.1) for each t _>0. Then z(t) does not finitely escape

(bounded on bounded intervals), z E L2.(X), u E L2.(R m) and there exists r/> 0 such that Ilul[ _< qllzll .

Proof: The proof is given in Appendix IX .

If A is non-negative, then Assumption 1 and Lemma 4 together imply that a unique mild solution exists

for aiit>0.
i

We now state and prove the generalization of the absolute stability theorem.

Theorem 3. Given the interconnected system as in Fig.

given by (1.1). Ifu(T)<Oand

yT A(t,y) _ 0 ,

1. Let 7" be an exponentially stable system

(4.6)

for all t __ 0 and y E R m, then z(t) _ 0 exponentially as t --- oo.

Pl'oof:

7". Now,

Let V(x) = (Pr, z) , where P is given by the solution of the Lur'e equation (2.1) associated with

[zrAx(t, z)l >_- zT At(t, z)

=zT A(I, z + Du)

=(z + Du)7'A(t, z + Du) + uT Du

>pmin(D) llA_(t, =)11= (by (4.6))

By property 7 of Fact 2, p_i.(D) > 0. Hence, Al(t,0) = 0. From Lemma 4, u E L_., which, by Lemma 1,
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impliesthat V(x(t)) is differentiable along the mild solution (2.2) and _r(z(t)) is given by

f'(t, x(t)) = -, II_:(t)ll2 - Ilqx(t)ll _ + :t(PBu(t), z(t))

= -, [[x(t)ll2 - IlOz(t)[I_ - 2 (PBA(t, y(t)), z(t))

- -e Ilz(t)ll_ - [IQx(t)[Ia - 2y(t)rA(t, y(t))

- 2A(t, y(t))rDA(t, y(t)) + 2A(t, y(t))rwroz(t)

(by (2.1b))

= -e IIx(t)ll2 - 2y(t)TA(t, y(t)) -- IlOx(t) -- WA(t, y(t))ll a

(by (2.1c) and completing the square)

_<-e IIx(t)ll2 (by (4.6))

By Lemma 3, part 2, the last inequality implies that e"'z(t) E L_([0,oo); X), for all a E (0, ½e IIPIl-_). From

Lcmma ,1, this implies e°%(t) E L2([0,oo); Rm). By Lemma 3, part 3, z(t) converges to zero exponentially

with rate a as t -----oo.

In many applications, the forward system T is strictly proper; since this implies u(T) >__0, Theorem 3, as

it stands, is not applicable. In the remainder of this section, we will generalize Theorem 3 to more general

classes of systems.

The interconnected system in Fig. 1 can be transformed to an equivalent system by using a loop trans-

formation ($III.6 in [40], §5.5 in [54]) as shown in Fig. 2. The corollary below applies Theorem 3 to the

transformed interconnected system.

Corollary 3.

system. If

and A satisfies

Consider the interconnected system in Fig.

1

v(T)<_ ,/_>0,

(A(t, y), (,',(t, y) - _y)) < o

1. Assume T is an exponentially stable

(4.7)

for allt >0andyE Rm , (4.8)

then z(t) ----,0 exponentially as t ---,oo.

Proof: The transformed forward system, T + _. I is exponentially stable and v(T + _. I) < 0 by (4.7).
Let _ be the input into the transformed feedback system. Then

1
= y- .;A(t, y)

P

The inner product between the input and output of the transformed feedback system is

1

1]T A( t, y) "-- yT A(t ' y) -- "_ IIA(t, y)ll 2 ,

which is non-negative by (4.8) . By Lemma 4, the internal signals do not finitely escape. Hence, by

Assumption 1, a unique mild solution exists for all t > 0. The exponential convergence of z(t) to zero then

follows by applying Theorem 3 to the transformed system.
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Fig. 1 can also be transformed to an equivalent form as in Fig. 3, in which the original forward and

feedback systems are both wrapped around with positive feedback, t_.l. Let v be the input of the transformed

forward system. Then u - ay + v. If _ ¢ a(D) (a(D) denotes the spectrum of D), then a realization of the

transformed forward system is

= (A + a(I- aD)-tC)z + B(I- aD)-lv

y = (I - c,D)-t(Cz + Dr)

Since A + a(I - aD)-IC is a bounded perturbation of the original generator A, it also generates a

Co-semigroup [Theorem 3.1.1 of 1]. Hence the transformed forward system belongs to the class of sys-

tems described by (1.1) .

The following corollary follows directly from Corollary 3.

Corollary 4. Consider the interconnected system in Fig. 1. Assume T is exponentially stable. Define

= ([_ , (4.9)

where _ _ a(D). Let tile transfer function representation of :r be T(s). If T is exponentially stable and

1

< > 0, (4.10)
and A satisfies

(A(t, y) + ay, (A(t, y) -- (_ - a)y)) <_ 0 for all t :> 0 and y E R m , (4.11)

then x(t) --* 0 as t --* oo.

Proof: In Fig. 3, the transformed forward system is T and the transformed feedback system is A(t, y)+ay.

The stated result follows from Corollary 3 by replacing A(f,y) by A(f, y) + ay.

Remarks:

4. A sufficient condition for the exponential stability requirement of T in Corollary 3 can be obtained

by applying Corollary 2. If
l

>0 and a<-- or
u(-T)

1
a _< 0 and a < --

u(T) '

then :T is exponentially stable. Alternatively, the graphic Nyquist test [55] can also be used, which has the

advantage of being both necessary and sufficient.

5. When m = 1 (single-input/single-output case), the class of A that satisfies (4.11) has a natural

interpretation of sector-boundedness: for each t, the graph of A lies between two lines: -c_y and (/3 - a)y.

For m > 1, we call (4.11) a general sector-boundedness condition, though the interpretation is less clear.

There are two special cases worth noting, however. In the first case, if_ = 2a, then (4.11) reduces to a single

norm upperbound of A by a. In the second case, if for each t, A is linear and symmetric (A(t, y) = z_(t)y

and z_ is symmetric), then (4.11) can be replaced by a norm upperbound on A by/3 - a and a lowerbound

on Pmin ("_) by -a (see section 6).

6. In Theorem 3 and Corollaries 2 and 3, if A does not depend on t, the resulting stability of the

interconnected system is uniform with respect to the initial time.
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5. Hyperstability

Wewill provetile hyperstability theorem in the following form: If v(T) < 0, then 7" is hyperstable and

cxponentiaily hyperstable. This result is similar to the absolute stability theorem, except the feedback system

A is dissipative in the more general sense of the Popov inequality or exponential Popov inequality. Indeed,

tile absolute stability theorem can be considered as a special case. By applying the hyperstability theorem to

tile iutcrconnected systems after applying the same loop transformation as in Section 4, a stability condition

for general sector bounded 7" and A is obtained.

We restrict our analysis to the class of feedback systems that preserve the weliposedness of the overall

interconnected system. This assumption is explicitly stated below.

Assumption 2.

for allt _0.

Given the interconnected system in Fig. 1. Assume a unique mild solution of T exists

A class of feedback systems for which Assumption 2 is satisfied consists of evolution equations with a

memoryless nonlinear feedback. Consider the following class of feedback systems

= Fz + Gy (5.1a)

w - Hz + Jy (5.1b)

-. = ¢(t, w) (5.2)

where z E Z, Z is a real llilbert space, w E R t, F is the infinitesimal generator of a Co-semigroup , G, H

are bounded operators, _ : Rl ---, R m is a time-varying nonlinear function. Eq. (5.2) can be written as

-u = _b(t, Hz + JCz + JDu) (5.3)

Tile discussion on the weilposedness of solutions in Section 4 also applies here. Assume u in (5.3) can be

uniquely solved for all t, z and z, i.e., there exists a function _1 such that

u = _t(t, ffz + JCz) (5.4)

Further assume that _1 is locally Lipschitz with respect to the second argument, uniformly bounded in t for

t in bounded intervals, and continuous in t. As shown in Section 4, a sufficient condition for the existence of

such function q_l is that _b is uniformly bounded in t for t in bounded intervals, and continuous in t, and qb

is locally Lipschitz with the Lipschitz constant L(c,T) that satisfies

L(c,T) IIJDll < 1 , (5.5)

SinceA,= [0A

for all T >_ 0 and c > 0. The interconnected system can now be written in the following form:

°1[:l- -,[:1)
o] [mo]F generates a C,--semigroup and Al = is a bounded perturbation of A°,

Co-semigroup (Theorem 3.1.1 in [1]). The nonlinear feedback map cb(t, [JC : H] .)isAt also generates a
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locally Lipschitz, bounded uniformly in t for t in bounded intervals and continuous in t, since _ has these

properties and [JC : El is a bounded operator. Hence, by Theorem 6.1.4 in [I], a unique mild solution of

(5.6) exists for all t such that z(Q and z(t) are bounded. In Lernma 5 below, we will show that if A satisfies

the Popov inequality then z and z cannot finitely escape. Hence, a unique mild solution exists for all t > 0.

The case considered in [34] and [§IV.2,39] is a special case of this formulation. The interconnected system is

given by

_(t) = Ax(t) + b+b(_(t))
d_r(t) (5.7)
T = (c,x(t)) - _(_(t))p

Ill our framework, this corresponds to I = i, B = -b, C = (c, .), D = p, F = 0, (7 = I, H = I, J = 0 and

time invariant. Since IIJDII = 0, the assumption on _bt can be directly placed on _b. We shall discuss this

example again later in this section. Another special case is when A is also a linear time invariant system

modeled by an evolution equation. In this case, _b is just the identity map and a unique mild solution of

(5.6) exists.

The following lemma is needed to show the differentiability of the energy function V(z(t)) along the

solution.

+-

Lemma 5. Consider the interconnected system in Fig. I. Assume D > 0. If A satisfies the Popov

inequality, then z does not finitely escape, z E L2,(X), u E L2.(R m) and there exist positive constants rh

and _ such that

Ilull, __._x + ,n Ilzll, (5.8)

If A satisfies the exponential Popov's inequality, then z does not finitely escape, eatz(t) E L2., e"tu(t) E L2.,

and there exist positive constants _, 171and r/2 such that

Ile""(s)ll, __7, ÷ _ Ile"_(s)ll+ (5.9)

Proof: The proof is given in Appendix X .

If A is given by (5.1) and F generates a bounded C,--semigroup (i.e., the semigroup is bounded uniformly

in t), then under the conditions in Lemma 5, z does not finitely escape either. Hence, condition (5.5) , the

Popov's inequality on A and D > 0 guarantees the existence of a unique mild solution for all t > 0.

We can now state and prove the main resultof thissection.

Theorem 4. Given an interconnected system as in Fig. I, let the forward system T be an exponentially

stable system given by (1.1) . If v(T) < 0 and A satisfies the Popov inequality, then x(t) -- 0 as t -- oo.

Proof: Let V(z) = (Pz, z), where P isgiven by the solution of the Lur'e equation (2.1)associated with

T. From Lemma 5,u E L2°. Hence, by Lemma I,V(z(t)) isdifferentiablealong the mild solution (2.2)and

_'(x(t))isgiven by (some algebra isskipped since itisidenticalto that in the proof of Theorem 3):

x>(t,x(t)) _<-. II-(z)ll2 + 2 (y(t), .(t))
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By integrating both sides of the inequality from 0 to co, we have

_ ! (vcx°) + < co

IIence, z E Lu([0, oo);X). From (5.8), this implies that u E L2([0,co); Rra). From Lemma 2, it follows that

z(t) -- 0 as t --+ co for all Zo E X.

Under additional assumptions, the asymptotic stability result in Theorem 4 can be strengthened to ex-

ponential stability.

Corollary 5. In Theorem 4, If, in addition, A satisfies the exponential Popov inequality, then z(t) -. 0

exponentially as t -- co.

Proof': Define

Vt(t,z)= e2"vcz) ,

where V(z) is as defined in the proof of Theorem 4. Since V(z(t)) is differentiable along the mild solution

of T, so is Vl(t, z(/)) and the derivative is given by

¢'x(t, z(t)) < 2o'e _'' (Pz(t), z(t)) ÷ e TM (-6 IIz(t)ll2+ 2 (y(t), .(t)))

_< _ lIPIDllz(t)ll + 2e2 ' (+,(t),.Ct))

By integrating both sides and using the exponential Popov's inequality assumption, we have e++z(t) E

Lz([0, co);X) For all _ E (0, ½ellP[I-l). By Lemma 5, this implies that e'*u(t) E L2([0,oo);R"). It follows

from Lemma 2 that z(t) -- 0 exponentially.

Remarks:

7. Theorem 4 and Corollary 5 only state that z(t) -. 0 as t ---. co and the feedback system is L_ stable,

but not the convergence of the internal signals in the feedback system. If the feedback system is given

by (5.1) in which F generates an exponentially stable Co-semigroup , then the feedback system is also

internally stable.

8. If A is an exponentially stable linear time invariant system that can be represented as (1.1) , then

by Proposition 1, the condition on A in Theorem 4 and Corollary 5 can be replaced by positive realness and

strictpositiverealness,respectively.

The same loop transformation technique used in Section 4 can be applied here, also. We first state the

result relating to the transformation in Fig. 2.

Corollary 6.

and A satisfies

Consider the interconnected system in Fig. 1. Assume T is exponentially stable. If

1
_,(T) < -_ ,/_ > 0, (5.10)

P

1

(y, acy)), - _ llaC+,)iiP >_ -_

for all t E [0, _o) and y E R m and some c >_ O, then z(t) --. 0 as t -- co.

(5.il)
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Proof: The transformed forward system, T + _ •/ isstrictlypositivereal by assumption. Let ._be the

input into the transformed feedback system. Then

#= y- ½A(t,y)

The L._-innerproductbetween the input and output of the transformed feedback system is

1

(9,A(y)), = (y, A(y)), - _ IlA(y)ll, _ ,

which, by assumption, is uniformly bounded below. Hence, asymptotic convergence of z(t) to zero follows

from 4.

If the feedback system is given by (5.1) and the transformed feedback system satisfies the Popov's

inequality, then all the internal signals are finitely bounded (by Lemma 5). Therefore, (5.5) implies a

unique mild solution exists for all t _> 0.

Similar to Corollary 3, the stability result related to the transformation in Fig. 3 can be easily derived.

Corollary 7. Consider the interconnected system in Fig. 1. Define

7" = (I- aT)-IT , (5.12)

where a£ _ _r(D). Let the transferfunction representationof _ be T(s). If_ isexponentially stable and

I

t,(T)< _ ,/_> 0, (5.13)

and A satisfies'

((zx(y) + c,y), (A(y) _ (8 - <

for all t E [0, co) and y E R" and some _ > O, then z(t) _ 0 as t --. oo.

(5.14)

Remarks:

9. In Theorem 4 and Corollaries5m7, ifA isa time--invariantsystem, the resultingstabilityof the

interconnected system isuniform with respect to the initialtime.

10. If/_ = 25, then the classof A that satisfies(5.14)isequivalentto an L2,-norm upperbound on A

for allt e [0,oo).

11. Results in this section can be directlyapplied to the type of systems addressed in [34].Consider

the system given by (5.7),where A generates an exponentially Co--semigroup and _ isa nonlinear,locally
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Proof: In Fig. 3,the transformed forward system isT and the transformed feedback system isA(?/)+ atv.

Since the transformed feedback system satisfiesthe Popov's inequality,by Lemma 5, u E L2. and z E L2.,

which impliesthat the input into the transformed forward system isin L2o. Corollary 6 can now be used to

complete the proof.



Lipschitzfunction that satisfiesr_(r) > 0 and @(0) = 0. The wellposedness of thissystem has been shown

in the beginning of this section. We want to show that more general stabilityconditions can be obtained

by using the resultshere. This system can be represented in terms of the block diagram of Fig. 4. The

forward system has the transferfunction

T(8)= :- c(sI- A)-Ib

The feedback system consistsof an integratorand @, which istime invariant.The L2,-inner-product between

tileinput and output of the feedback system iscomputed as

t =/_0)
@(o'(r))d_d(_)dr @(o.)do.

J_,(o)

Define (1)(u)= fo @(_) d_. Since @ isa first-thirdquadrant function,@(o.)> 0 for allo.E R. Hence,

do.= ¢,(o.(t))- >
(o)

which implies that the feedback system satisfiesthe Popov inequality.By Theorem 4, ifu(T) < 0, then

the system described by (5.7)isuniformly asymptotically stable.This resultismore general than that in

[34]in which @ isrequired to satisfyan additionalcondition limhi_o= fo @(o.)do" = oo for the closed loop

asymptotic stability.Furthermore, Corollaries6---7can be used for more general classesof forward and

feedback systems. For example, the reactor type equation in Eq. (1.3)of [34]isa case that the stability

condition in [34]isnot directlyapplicable (sincep = 0) but can stillbe considered within the framework

here.

12. Absolute stabilitytheorem, Theorem 3, can be considered as a specialcase of Corollary 5. IfA

isnon-negative for each t,itsatisfiesthe exponential Popov inequality.Then, by Corollary 5, z(t) _ 0

exponentially as t ---*oo.

6. Robustness Analysis for Unstructured Uncertainties

l'tesultsinsections4-5 can be interpretedina robustness analysiscontext. Restate the resultinCorollary

7as:

For all _ that satisfies
1

-

a classof A that preserves stabilityisgiven by

(6.1)

r.t(e,/_)= {A: ((A(t,9)-l-c=p),(A(t,_.l)-(l_-a)II))t<_ forsome _, allt and all9E L2,) (6.2)

We only consider the uncertainty classas in (6.2);the absolute stabilitycase (where inner product istaken

in R m) followsinexactly the same way. In thissection,we willanalyze conditions (6.1)and (6.2)ingreater

detail;specifically,we want to restatethem in terms of conditionsdirectlyon 7" and A, respectively.

Firstconsider (6.2) . In the SISO case (m = I), thiscondition has a natural interpretationof sector-

boundedness: A lies between two lines: -ap and (/_ - a)9. We call (6.2) a general sector-boundedness
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condition on A for rn > 1; however, the interpretation is less clear. We seek to relate E_ to the following set

that has greater practical appeal (a norm upperbound and an inner-product lower bound):

_:(_, _) = {4: IlzX(t,y)ll, _<(_ - _) Ilyll,÷ _x , (/x(t, y),y), >_-_ Ilylh_ - 72,

for some _fl,'Y2 > 0 all t and all Y E L2,}
(6.3)

It is easy to see that Et(ot,fl) C E2(t_,fl). However, the reverse inclusion is of greater interest since we

would like to have the stability condition (6.1) to directly provide an acceptable class of A given by E2.

Unfortunately, the reverse inclusion is not true in general, but it is true in the following two special cases.

1. fl =2a.

2. In _1(_,/3) and E2(_,/3), replaceI1"11,and (-,.), by I1"11and (.,.), 7,'s by zero. /x in _, is assumedto
be linear and symmetric.

Case 1 follows from algebra. The set E2(a, 2a) then reduces to a single norm upperbound of A by a.

In case 2, there exists a symmetric matrix/_ for each t such that

_(t, y) = A(t)y

Suppose A E E_(a,/3), i.e.,

IlA(t)ll < _-

,m,. (A(t)) _> --_ .

i

for all t >_0. Since A(t) + _ • I is symmetric non-negative definite, there exists a factorization:

(e.4)

;_(t) + o_. I = MT M

NOW,

I1(£÷ _ i)yl[2 _ _yT (_x ÷ or. l)y

=( II(A + _" Z)ull 2 _ fl). yT(A + _- t)y
yr(A + a. I)y

_<( [IMTMzfl[ 2
ilMyll _ _) . yT(A -I" Or. rl)y

_<(IIMII"- a)" yT(£ + o,. Z)y

_<(I1£+ all - _)- yT(£ + c,. Z)y

_<(i1£11_ (fl _ _,)). yT(A + _. Z)y

<0

Ilence, A E Et(ot,fl).

The inclusion E2(a, _) C El(a, #) is not true in general, witness antisymmetric A + a- I. The following

result shows a connection between the two sets. If

(A - at) 2 + (# - 2a)al - a(# - a) < 0 (6.5)

then
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Given (a,8), the allowabh region of (al,St) is shown in the shaded area in Fig. 5. This figure is useful in-

finding an acceptable class of A G E2(cq,81), given a pair (c_,8) from Corollary 4 (a graphic method will

be discussed later in this section). Given (al,St), the allowable (a,8) is shown in the shaded ares in Fig.

6. This figure can be used to transform uncertainty specification from _2(cq, 81) to Et(oc, 8)-

For the rest of this section, we focus on (6.1) . We assume 8-a >_a; otherwise, the lowerbound in (6.3)

is redundant. A more convenient sufficient condition for (6.1) is stated below.

Proposition 5. If T is exponentially stable and there exists r/> 0 such that

1 + (8 - 2a)[RF(T)](w) - a(8 - a)IlT(jw)[I 2 _. ,

for M1 w 6 R, then v('T) < _ where 'T is given by (4.9) .

Proof: If (6.6) holds, then for all v E C 'n

which can be written as

(8- 2a)Rev'Tv + llvllz - _(8 - 0)liT'vii 2 _ _llvil2

Key'((8 - a )T + I)(I - aT')v > tI I1_11_

For each ,, E R and z E C m, define

By Theorem 5.7.1 in [56], we have

1

IIU- _T'(J_))-_II > 1 + _ IITII_.

IIence, there exists a 5 > 0, independent oft0, such that

Ilv,_ll2 > s 11=112

Substitute v,_ for v in (6.7) and use (6.10) , we have

R,ez'(I-aT(jw)) -t ( )T(jw)+-_.I z_>_C[]zH 2

for some _ > 0 and all z G C". This can be written as

1

Rez'((I- aT(jw))-lT(j¢o) + -_)z >_ _ Ilzl[ _

which is equivalent to v('T) < _£.

Remarks:

13. Note that (6.7)
-.-t.-

"sector" (--(#__), _).

(6.6)

(6.7)

(6.8)

(6.9)

(6._o)

has similar form as A in Et. Therefore, we say T is sector bounded with a general
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14. A sufficientcondition of (6.6)is

a(_ - a)][TH_" < 1 - (_ - 2a)v(T) (6.11)

If/?= 26, then (6.6)becomes
I

- a - a < IITIIH"'--_ (6.12)

Recall that when/_ = 26 the classof A that preservesstabilityischaracterizedby the small gain conditions

(see Remarks 5 and I0). Hence, we have obtained the followingsmall gain stabilitycriterion[40]:

forsome 7 > 0.

II_l] < 1 Ilyll_.__z,
- IITI[,,---'-_or ]l_ll. s IITI],,. +7 (6.13)

If _ = O, then (6.6) becomes
1

v(T)

This case isa restatement of Corollary 4 and 7.

(6.14)

Ifv(T) = 0 (i.e.,T ispositivereal),then (6.13)becomes

I

•_(_--)< _ (6.16)

This condition demonstrates the trade-offbetween the upperbound and lowerbound of A when T ispositive

real(/_- crand otare interpretedas generalizedupperbound and lowerbound ofA respectively;see Remark

5).

15. Another specialcase of interestis when A isa constant linearscalar. Write A as Z_y. Then an

acceptable classof _ is

I I
< £ < _ (6.16)

_(-T) .(_r)

Given a system T, condition (6.6) can be checked by a single graphic test. Write (6.6) as

sgn(a) [-(RF(T)(w)- 1) (RF(T)(w) + B_-_I a)+ RF'(T)(w)-HT(jw)J,2]>_7 (6.17)

Define

z(w) 2 = (]lT(jw)]l 2 - RF2(T)(w))

where the sign of z is chosen the same as the sign of w. If z(_) is plotted versus RF(T)(w), then (6.17) is

' equivalent to the plot staying within the circlesymmetric about the RF(T)(w) axis with end points -__--_

and ±¢,,for a _>0,and staying out of the circlewith end points -_+--_ and - I-_7_'for a _<0. The forbidden

region in each of the two cases,a > 0 and a _<0, isillustratedin Fig. 7 .

The z vs. RF(T) plot is similar to a Nyquist plot except T can be a matrix (if T is a scalar transfer

[unction, then this plot is just the Nyquist plot with perhaps a flip about the BeT axis). The graphic
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test itself is similar to the circle criterion [24,40]. Since it reduces exactly to the circle criterion in the

lumped parameter, single-input/single-output case, this test can be considered as a generalization of the

circle criterion. Note that a and _ need not be selected a priori. Once the Nyquist-like plot is given, a and

can be chosen so that the corresponding circles either enclose or stay away from the plot, depending on

the sign of or. Of course, c_ is additionally constrained to feedback stabilize 7".

This version of the circle criterion for evolution equations is similar to the previous generalizations in

[35, 36]. The setting here is slightly different in that the input and output spaces are assumed to be finite

dimensional. As a consequence, we are able to obtain the graphic test involving a single Nyquist-like plot.

Remarks:

16. To apply this technique in robustness analysis, we suggest the following procedure. If m = 1, use

(6.16). If m > 1, choose a and _-a from the generalized circle criterion (by using fig. 7) with the constraint
1

that a < L,(-T--"-_"Then interpret the acceptable class of A by either Ez(a,,S) or _2(al,_l) with (a1,_1)

satisfies (6.5).

7. Robustness Analysis for Structured Uncertainties

When additional structure is known in A, stronger stability results can be obtained. In this section,

we assume A is diagonal and time invariant. By increasing the assumption on the elements of A, from a

general time invariant sector bounded nonlinearity to monotone nonlinearity to linear scalars, progressively

improved robustness margins can be obtained.

To proceed with the discussion, we need to introduce the multiplier technique for robustness analysis. At

the present, it is necessary to restrict 7" to finite dimensional systems due to the boundedness requirement

on the input and output operators (B and C). The generalization to evolution systems is included in the

research thrust to extend the passivity approach in this report to unbounded input and output operators.

Consider a scalar, non-negative A in Fig. 1. A multiplier, z, is an operator that changes the passivity of zT-

from that of T, but does not change the passivity of A- _ from that of A. We can use this technique together

with the loop transformation introduced in Sections 4 and 5. Consider the system in Fig. 1, assuming both

systems are scalar. After feedback of a and feedforward of _, the forward system becomes 7"_ -6 _. Call

the feedback system A, with input _ and output w, after the corresponding loop transformations having

been performed on A. If there exists a multiplier z for the transformed interconnected system such that

u z. /+aT+ ) <_0 ,

then z(t) -- 0 as t ----oo so long as

(7.1)



Now, y = _- + _. Therefore, .0 = y - _'. The condition for stability (7.1_) becomes

w

(y- _)1o > 0
1o 2

¢*Ylo>-"7

_1o_ < _ylo

¢,0 < (A(y) + ay) _ < _y(A(y) + ay)

¢*0 _ (zx(y--l)-+ _,) <
Y

- _ < --'A(y_._2< _ - _,
Y

This then motivates the following optimization problem for finding the "best" multiplier, given a lower bound

a for A:

Find .: from a specified class of muRipliers which maximizes _ that satisfies

v Z.(l+a-----_+ ) "cO (7.2)

\

In the rest of this section, we will discuss results related to special classes of multipliers and their appli-

cations to diagonal uncertainties.

If A is a scalar, time invariant nonlinearity, the following is a legitimate multiplier

zt(flo) = 1 + qjw for any q __ 0 (7.3)

If A is a scalar monotone nonlinearity, in addition to zl, another valid multiplier is

z2(jw) - 1 + qj for any q E R (7.4)

When A is diagonal and linear, the transformation DAD-t = A does not affect the feedback system but

changes the passivity of the forward system, D-lTD. This technique is called D-scaling (since it represents

a rescaling of the input and output of T) and has been used extensively in the computation of the p measure

[12].

First consider the multiplier zl. If A is a scalar time invariant, first-third quadrant nonlinearity, then the

L2, inner product between the input and output of A • _ is

<(A -_t )(y),y> =,A(y),y,t+(A(y),_l,, (7.5)

By assumption, the firstterm in (7.5)isnon-negative. The second term can be written as

(') A(y) dy
(o)
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,et Y = j'_ A(_) d_. Then

y(O A(y) dy = Y(y(f)) - Y(y(O)) > -Y(y(O))
(0)

IIence, A • _ satisfies the Popov inequality. Assume 7" is strictly proper (D = 0). Then zlT" is proper with

particular realization (A, B, C + qCA, qCB). The difficulty for infinite dimensional generalization is clear:

y may not be differentiable and Theorem 2 does not allow unbounded input and output operators. Since T

"3 assumed finite dimensional,

< o , (7.s)

implies that tile state of zlT converges to zero asymptotically, by Corollary 6 . Since zl only affects the

utput map of 7", the state of T converges to zero, also. If the upperbound of A is fl, then the stability

condition (7.6) becomes _,(zt(T + _)) < 0 which is equivalent to

1

u(z,T) < _ (7.7)

The stability condition obtained by using the multiplier zt is called the Popov criterion and has a graphical

lterpretation [40,54,25].

Condition (7.7) can be posed as an optimization problem: find q in zt that maximizes ft. An equivalent

roblem is to find q that minimizes J(q) - u(zlT). We now show that J(q) is globally convex in q, therefore,

Lne optimization problem can be efficiently solved by using, for example, a line search technique. The

convexity of J(q) is shown below:

J(aql + (1 - a)q2)

=u ((1 + (_ql + (1 - a)q2)j_)T(j_))

=u (a(l + qlj_)T(j_) + (1 - a)(1 + q2jw)T(j_))

_<an((1 + qljw)T(j_)) + (1 - a)u((1 + q_j_)T(j_))

(by parts4 and 5 of Fact2)

=_J(qt) + (1 -- _)J(q2)

If A is a scalar monotone nonlinearity, the multiplier z2 can be used in addition to zt. This fact was

proved in [p.166 in 25] and [57] and was shown leading to the off-axis circle graphic test. IrA is non-negative

ith upperbound fl, then a condition for stability based on z2 is u(z2(T + _)) < 0 which is equivalent to

1
 (z27") < (7.8)

gain an optimization problem can be posed to find q that minimizes J(q) - u(z2T). With analysis identical

to the zl case before (with w = 1), it is easy show that J(q) is globally convex in q; therefore, the optimization

•oblem can again he efficiently solved.

We now consider A with scalar diagonal elements, Ai, i = 1,... ,m. If each Ai is a non-negative

mlinearity (possibly non-monotone), then a straightforward generalization of the scalar result leads to the

llowing bound on fl_ maxi IAi[:

< rain u(_/_Z1) ' u(ZtT) (7.9)
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whereZ1 = diag {1 + qljto .... ,1 + q,,_j_}. The optimization problems of finding q = col {ql,..., qm) to "

minimize J(q) = v(TZ1) or J(q) = v(ZlT") are again globally convex in q.

If each Ai is a non-negative monotone nonlinearity, then the inverse of a upperbound on max_ ]A_ I

can be found from the minimization of the indices J(q) - v(7"Zi) or J(q) - v(ZiT) for i = I, 2 and

Z_. = diag (1 + qlj .... ,1 + qmj}, which are all globally convex in q.

In applying the above results, a lowerbound, L = diag _-al,... , -am}, should be subtracted from each

Ai. Then upperbounds for A_ + aiy can be found by using the multiplier technique with 7" replaced by

(z +

When each A_ is, in addition, linear, we obtain a superior stability criterion. Write each A_ as

_y. Consider 2m different cases of possible variations of /x, depending on the signs of each _i. Let

S' = diag {sl,... ,s,,}, where s_ is either +1 or -1. Clearly, there are 2" possible S. By combining with

the multiplier technique before, we have the following stability condition for each quadrant of the parameter

space:

> 0 (7.10a)

= max I_.,I < max max _'.. 1 1 } (7.10b)I1£1i
i _=I,_ l mlq v(STZ_(q))' infq u(Zk(q)ST) '

where si -- q-1.

Since /x is linear, we can further incorporate the D-scaling into (7.10) :

> 0 (7.11a)

II£ll = max I ,l < sup max max ( 1 1 }D k=1,2 infq v(DST"D-l_k(q)) ' infqv(ZJ,(q)DST"D -1) , (7.11b)

where D = diag (dl,... ,d,n}, d_ E R.

It can be easily shown that the minimum of the bounds in (7.11) is a less conservative upperbound for

the p measure than a common choice in the literature: info HDT"D-IHH.,, and, furthermore, it is a bound

for the real parameter variations (i.e., _ E R).

The stability bounds in (7.10) and (7.11) measure "directional" robustness. The added information over

a single scalar measure such as the _ measure may be useful in the following context. If A can be modified,

then directional robustness can point to a set of parameters that possesses better robustness property.

Frequently, the true plant is a linearized version of some nonlinear system. If A corresponds to uncertain

plant parameters, then the results here can point to a more robust operating point. If A corresponds to

uncertain gains in the controller, then direction robustness is again useful in selecting a robust nominal value.

We have only consider two specific choices of multipliers so far in this section. This is due to their simple

forms and the global convexity in the corresponding optimization problem. In general, there exists a large

class of multiplier for monotone nonlinearities [58, 59]:

z(j_) - 1 - __: zl(t)e -j'_' at (7.12)

zl(t) > 0 for all t E R (7.13)

_zl(t)dt < 1 (7.14)
0O
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For tile rest of this section, we will present some preliminary thoughts on finding the optimal multiplier

within this class. Suppose A is scalar and non-negative. Then u[(T 4- _)z] < 0 is a sufficient condition for

stability. A numerical algorithm was proposed in [60] to find the largest _. To reduce the problem to an

optimization involving finite number of parameters, t and w are discretized over uniform and finite grids. The

algorithm then finds the optimal multiplier for repeated guesses of _ until u[(T 4- _)z] < 0. We propose a

different procedure. Write the optimization problem in a slightly different form. By straightforward algebra,

itiseasy to show that

v[(7" + _)z] < 0 ¢:_ fl < g [inf Rez(jw) 1Re ( T(jw )z(jw )) J

where

)_ _ ifz _> 0
g(z _ [:[ if z<0

Since :t(t) _> 0, there exists z2 E L2(-oo, oo) such that

_f_ zt(t)e = ,

(7.15)

(7.16)

where the inner product isthe complex L2(-oo, oo) inner product over the variablet,and h isgiven by

h(jw) - eJ'_'_h,(w)+ jhi(w)

hr(t#) -" coswt h_(_) = sin_t

Let T, and Ti be the real and imaginary part of T. Then the problem of finding the optima] multiplier can

be written as

[ l-(h,z,,z2) ]_" = sup inf g (7.17)

II*,ll,<t

This is an infinite-dimensional optimization problem since z2 is in a unit ball in L2(-co, oo). Let {ei}i=l°°

be a basis of L2(-co, co) (such basis exists since L2(-co, co) is separable). Approximate z2 by

N

z2 = E a_ei= Ea , (7.18)
i=l

where E = {e, .... , eN} and a = col {al,..., aN). Let H, be the symmetric matrix with the (i, j)th element

(h_ei, ei) and Hi be the matrix with (hiel,ej). Then the optimal multiplier problem can be approximated

by the following finite dimensional problem:

/_N= sup inf g[
1 aT Hra ]

HaH_<I_e _ LTr - T, aT H_a -4-Ti aT Hi a J

Many constrained nonlinear optimization algorithms can be used for thisproblem (e.g.,[61]),but issues

such as the rate of convergence and numerical stabilityremain to be explored. _tv isclearlynondecreasing

in N and bounded above by 8*. If_* isbounded, then _N willconverge, but whether itwillconverge to _*

remains to be investigated.

Convergence of nonlinear numerical optimization algorithms depend heavilyon the accuracy of the initial

guess. Therefore, as N isincreased,optimal a from the previous iV, padded with zeros,should be used as a

startingguess for the next optimization problem to improve convergence.

Application of this wider classof multipliersto the case of diagonal A followssimilarlyas before. This

resultwillbe communicated in future memos.
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8. Application to Nonlinear Systems

In this section, some preliminary results on robustness of nonlinear systems (i.e., the state space description

of T in Fig. 1 is nonlinear) are presented. To avoid too much technicality, we assume X - Rn. There are

two possible approaches. The first approach converts the nonlinear state dynamics of T to a linear one with

nonlinear perturbation and then apply results in sections 4-5. The second approach directly generalizes

absolute and hyperstability to nonlinear systems by using the input/output characterization of passivity

(Popov inequality) and an equivalent state space condition (nonlinear version of the Lur'e equations) [42].

Only the first approach will be discussed here, as the latter approach is still under development.

Suppose z -- 0 is an equilibrium point (i.e., f(t, 0) -- 0) of the following system

_(t) -" f(t, z(t)) (8.1)

We are interested in finding conditions for the equilibrium point to be globally asymptotically stable. Rewrite

(8.1) as a linear system with a nonlinear perturbation:

&(t) = -az(t) - (-f(t, z(t)) - az(t)) , (8.9_)

where a > 0 is an arbitrary scalar. Since _ = -az is strictly positive real (with A = -aI, B - C = I,

D = 0, P = I, e = 2a and Q = 0 in the Lur'e equations), by Corollary 3

:Tf(t,=) < --_ I1:112 (8.3)

implies that (8.1) is exponentially stable. Contrast this condition with the condition in the Krasovskii

Theorem [Theorem 6.4 in 62] (for time-invariant systems):

Vzf(t, z) <_ --5I (8.4)

We now show thisisa specialcase of (8.3) .If (8.4)issatisfied,then there exist51,... ,dlnsuch that

af,(t,=)
Ozi > & > 0

Integrate both sides from 0 to zi. Then

-fi(t,z) > Sizi ifzi>0
-fi(t, z) < 5izi if zi < 0

Ilence,-fi(t,z)zi > 6_z2i,which implies (8.3) .

In tile same spirit, the following more general result can be derived:

Proposition 6. Given (8.1) . Suppose that f(t,z) isbounded with respect to z for each t and there

existsa matrix P > 0 and a constant 7 > 0 such that

-zrPf(t, z) > "r I1=11= for all z and t (8.5)

Then (8.1) is exponentially stable.
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Proof: Again rewrite (8.1) as (8.2). Let z = P-tz be the output of this system. Since P > 0 =_ p-t > 0,

it follows that (-aI, I, P-l,0) is strictly positive real. Define fl(t,z)_-f(t, Pz) - f(t,z). By writing the

perturbation term in terms of the output z, the following condition is sufficient for stability (from Corollary

3):
zr(--fl(t, Z) -- OtPZ) _ 0 (8.6)

We now show that (8.5) implies (8.6) .

zT(--.fl(t, z) --

= -- zTf(t, Z) -- otzTp-tz

= -- zTPf(t, Z) -- otzTp-tz

>711=112- liP-ill ll=ll2

_>.xII II ,+x> o

The last inequality follows by setting a sufficiently small.

Note that condition (8.3) is a special case with P = I.

The same framework can be used to study robust stability of a perturbed nonlinear system. Suppose the

actual system is of the form

- fT(t, z) -- f(t, z) + (fT(t, z) -- f(t, z)) (8.7)

If the assumption in Proposition 6 is satisfied ( implying that system (8.1) is exponentially stable), then a

sufficient condition for stability is

--zTpCfT(t,Z) -- f(t,z)) > --7 Ilzll2 , (8.8)

where 7 is given by (8.5) . By using the same technique am before, a condition that implies (8.8) is

-P(V_fr - Vzf) - (V_fr -- V_f)TP + 27I >_ 0 for all t and z (8.9)

This condition has appeared in [41].

Results in this section can be applied to a common situation: approximation of a nonlinear system by a

linear system. As a special case, we will recover the result in Lemma 3.1 in [41]. Suppose the true plant is

nonlinear but linear in the control and a full state feedback u = -Gz has been applied. Then

f(t, z) = CA- BG)z

fr(t, Z) = (AT(t, Z) -- Br(t, z)Gz)

Assume the linear system is closed loop stable. Then there exists P :> 0 that satisfies

P(A - BG) + (A- BG)T p = -Q < O ,

which implies (8.5) . Condition for the stability of the closed loop nonlinear system follows from (8.8) :

zT( p((Az -- Ar(t,z)) -- (B - Bv(t, z))Gz) + ((Az - AT(t,z)) -- (B - BT(t,z))Gz)T Pz + zT Qz
(8.10)

> 0 for all t and z

37



A sufficientcondition,which isLemma 3.1 in [41],followsfrom (8.9):

p((A-V_AT)-(B-V=(BTG_c)))+((A-V.AT)-(B-V=(BTGz)))T P+Q > 0 , for allt andz . (8.11)

As stated earlier,the firstapproach isrooted in lineartheory and the nonlinear dynamics is treated as

a perturbation. Itis possible to generalizethe robustness analysis ideas presented in previous sections to

nonlinear systems by using Popov inequalityand nonlinear Lur'e equations to characterizedlssipativeness.

The v-index can be defined based on the minimum feedforward required for the nonlinear system to satisfy

the Popov inequality;and it can then be related to the nonlinear version of the absolute stabilityand

hyperstabilitytheorems. Past research inthisarea spearheaded by Moylan and Nill[42,63,64]has produced

much of the required machinery. We willcommunicate our work in this area in the future.

9. Controller Synthesis by the Passivity Approach

Research into finding a stabilizingcontrollerto attain the optimal u-index is stillat the preliminary

stage.This sectionprovides some ideascurrentlybeing explored. We willborrow heavilyfrom [43]and the

terminology in [43]will be used throughout this section. The idea is a straightforward one: use bilinear

transform to convert the v--indexsynthesis problem to an Hoo-norm synthesis problem, the solution of

which iswell known [44,65,43,66].In certaincases,thisapproach yieldsnice analyticalexpressions for the

achievable closed loop u-index. One such case iswhen the open loop plant isadditivelyperturbed and the

v-index of the closed loop transferfunction around the perturbation isto be minimized. This problem can

be transformed into the standard Nehari problem [65]which can be solved analytically.We then use this

resultto design a stabilizingfinitedimensional compensator for an infinitedimensional open loop plant.

Assume a system configuration as given in Fig 8. Denote the open loop plant by G instead of P. The

transferfunction between w and z isgiven by the linearfractionaltransformation [65]

&(c, z<)=[c,, + C,=K(Z- (9.1)

Given (a, b), we say a transfer function T E sector[a,b] if T is stable and

RF [(I-bT)'(T-aI)] >_0

where RF is as defined in (2.17) . The (a, b)-sector synthesis problem is defined as follows:

Given (a, b), find K such that Ft(G, K) is in sector[a, b].

As shown in [43],

T e sector[a, b]

¢#ZA-(T -aI)(I- b-iT) -x e sector[0, co]

_S_-(I - Z)(I+ Z) -t E sector[-l, 1]

From this result, it follows that the the (a, b)-sector synthesis problem for arbitrary (a, b) can be transformed

to a (-1, 1)-sector synthesis problem (also called the small gain synthesis problem) [43,Proposition 1].
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Proposition 7.

(-I, l)--sector synthesis problem for the plant

where

Given (a, b). K solves the (a, b)--sector synthesis problem if and only if K solves the

[._/_-1(_ -- _--1((;11 -- aI))
0 = [ GuIM_I-_I

_.= I --b-I(;11 and

-2(1-ab-l)M-l-:-l(;m ]

(b -1 - 1)GuIM-l=-1(;12 + G22 J '
(9.2)

M = I+--1((;11- aI)

To apply this result in our context, imagine an uncertainty --A that feeds from z to w. Assume a

lowerbound, _, of & has been subtracted so that & isdissipative,and _ isalso incorporated into the open

loop plant (as a feedback ). The problem of finding the upperbound of A can be posed as the following

u-index optimization problem:

Find K that stabilizes G and .unLmizes _(Fz(G, K)).

The above optimization problem corresponds to findingthe smallest a such that FI(G, K) E sector[-a,oo].

By Proposition 7, this problem is further equivalent to the small gain synthesis problem for the modfied plant:

C= [ -I + 2((1-a)I + Gz[)-I -2((1-a)I +Glz)-z(;12 ] (9.3)G21((1 - a)I + (;n) -1 -G21((1 - .)I + Gll)-IG12 + G22

The procedure of solving this problem isknown [65,43and referencescontained therein ],we willonly

brieflyoutlinethe procedure below. By using the stable fractionalrepresentationof transferfunctions,the

complete set of stabilizingcompensators can be parameterized by an RHoo (realproper stable transfer

matrices) matrix, Q, calledthe Youla parameter. Then the problem offindingK so that llFl((_,K)II# = _< I

can be recast as a Hankel approximation problem of finding X E RHoo such that IIR- xns. < 1 for some

R E RL_o [67] (real proper transfer matrices with no poles on iv-axis). The optimal value of IIR- xllx.

equals to HI'Rll, where FR is the Hankel operator associated with R. IlrRl[ can be easily computed [65], it

is equal to the maximum eigenvalue of the product of the controllability and observability grammians of R.

Therefore, the optimization problem is solvable if and only if [[ra[I < 1. Formula for computing the optimal

X can be found in, for example, [65,67,43].

For our original problem, we start from a = 0 and increase a until the problem becomes solvable (by

checking if IIFRI] _< 1), at which time, find the optimal X for the Nehari problem and convert it back to the

compensator.

In certaincases,a bound on a can be computed analytically.The restofthissectionisdevoted to one such

important specialcase. Consider the followingproblem: Suppose the true plant isP+AP where P isknown

and AP E RHoo, find a finitedimensional K that stabilizesP + AP. We firststate a sufficientcondition

for a given K that stabilizesP to alsostabilizeP + AP. This condition requires the product between the

v-index of the nominal closedloop transferfunction around AP and the sum of v-index and the Hoo-norm

of AP to be suf_cientlysmall. We then show the nominal v-index only depends on the antistablepart of

P and a bound can be computed. [fP + AP representsa high order (possiblyinfinitedimensional) open
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loop system and P is a lower order (finite dimensional) approximation, to be used for low order controller

design, the Hoo-norm of Ap can be made small without affecting the nominal closed loop v--index. Thus,

the stability condition will be satisfied if either P is a high fidelity approximation of P + Ap (small AP) or

the antistable part of P can be stabilized and has a small v-index with respect to the additive channel.

We first use hyperstability to derive a sufficient condition for a given compensator K to stabilize an

additively perturbed system.

Proposition 8.

Suppose Ap is exponentially stable and its upper and lower bounds are given as

v(AP) <_ "7 ,7 > 0 IIAP]IH, <_ 3 (9.4)

Let K be a compensator that stabilizes P. Define

If

-- e0" v K(I-(P (6+23,).I)K) -t (9.5)

1
o'(5 + I') < _ , (9.6)

then K also stabilizes P + AP.

Proof.-

Given a compensator K that stabilize P, deeompo6e the clooed loop system into two interconnected

blocks as in Fig. 1, such that the forward system is K (I + (P - (5 + 2_/) •/)K) -t and the feedback system

is Ap + 5 + 27. Recall that if an exponentially stable, LTI system is strictly positive real, then it satisfies

the exponential Popov inequality. From Corollary 6 and Proposition 1, a condition for the interconnected

system to be stable is

1
sup z'(AP(jw) + 6 + 27)*(AP(jw) + 5 + 2_ - _)z < 0 for all z e C" (9.7)

w

By using the upper and lower bounds of AP, it is clear that the inequality is implied by the condition (9.6) ,

which completes the proof.

The nominal closed loop v-index, _, in (9.5) depends on AP (through 7 and 5). If 3' and 5 are re-

duced through better approximation, 0" may get worse. To derive an bound for o"independent of AP, first

decompose the nominal open loop system to a stable part and an antistable part:

P - (6 + 2-r). I = P, + P, - (6 + 2-r). I ,

where P_ is antistable and P, - (5 + 27). I is stable. Without loss of generality, assume P_ is strictly proper,

since any feedforward term can be absorbed in P,. By subtracting the stable part from both P - (5 + 27). I

and If, the nominal closed loop system can be written as (this transformation is motivated from [68])

K(I - (P - (,5 + 27)- I)K) -z = Kz(I - P_K_) -z , (9.8)
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where

K, = (I - K(Po - (5 + 27). 0)-_K

Since K1 is an equivalent parameterization of K,

infv {K(I - (P - (5+ 27).I)K)-' } = infv(KI(I - P,K,) -I)
K Kt

(9.9)

(9.10)

We now focuson the optimizationintherighthand sideof (9.10)and proceedto derivean upperbound

thatisindependentof AP. We onlyoutlinethe procedurehere,the detailwillbe communicated in the

future.The optimizationproblem in (9.10)isequivalentto findingthe smallesta such that(-a,co)--sector

synthesisproblem associatedwith theplant

G= p. ,

issolvable.By Proposition7,fora givena,the (-a,co)-sectorproblem isequivalentto the (-I,l)-sector

problem associatedwith the plant

P. -_IJ _= 1 +--'_

For simplicity, we assume P, does not have poles one the jw-axJts. When the assumption is false, there is a

simple modification which we will mention later in the section. This assumption is not overly restrictive, as

we can always shift the jw-axis by a small amout to move these poles to the right half complex plane.

The complete set of stabilizing compensator for this plant is given by

K-(Y + MQ)(X + NQ) -I , (9.13)

where M, N, X, Y and other relevant quantities axe given by the following doubly eoprime stable factorization

of P,,, assuming (A, B, C, 0) is a balanced (hence, minimal) realization of Pu - ¢I (for detail see [69]):

P, - _I = NM -1 = 2Q-11V

AE + EA T = BB r

ArE + EA

F = BT_ -1

The two Lyapunov equations in

imaginary eigenvalues [70]. With

= cTc

= dlag (crt, _2,... ,o'.)

H = E-1C r

_'1 > _r2... > o-. > 0

(9.14)

(9.14) are solvable since we have assumed A does not have any purely

this choice of coprime factorization, M and 2t7/axe inners, i.e.,

M'M=M'M=I

Aftersubstitutingthecontroller(9.13)intoFt(_,K), we obtainan equivalentproblem(themodel matching

problem in[65]):Find Q E Rlloo thatsatisfies

(9.15)IITt - T2QT311u.= IIF+( +,K)IIH. < 1
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-+

where
Tt = (2(:- I)I- 2¢2M?

T2 = -2¢M

T3=¢_

The left hand side of (9.15) can be further manipulated into

llTt- T_QTallz..= 2_2fir- QIIz.

{'2¢-I'_
R=\ 2C_ /F_-F2

r, = M'g" r2 = ?_"

(9.16)

(9.17)

If M and _[ are not inners due to jw-axis poles in P,, (9.15) can still be manipulated into the standard

Nehari problem by using the inner-outer factorization of M and co-inner-outer factorization of ATf[65,§7].

Note that R is a_ntistable, so this is the standard Nehari problem of finding the best stable approximation

of an antistable Loo matrix. It is also important to note that Ft and F2 do not depend on _, since M, /Q

and ? do not. Before stating the solution of this problem [71,67,65], some preliminaries are needed first. By

using the expressions in (9.14) , we can compute a state space representation for FI and F2:

HT]_sI_ [_(A+NBF) T .FTHT ],_-IFl =l-[B T

F2 = -F(s[ - A)-I H

(9.18)

Itiseasy to see that.the controllabilitygralTuIfi&nof FI is r_-/oI
I.

[=0]0 E -t , and, for F2, both srammians are _-I. Hence,

O] and the observability grammian is

1
llrr,ll= 1 , llrr_ll=--

A
_--O'min(P_) = minimum Hankel singular value of P_ [69]

(9.19)

The problem of finding Q to satisfy (9.15) has a solution if and only if

2f2llrRll_<t

(since re = (%_-_)r,, + r,,)A sumcient condition is

(9.20)

2¢_((_) llrr,ll+ llrr_ll)<I

_* a >__.__ I
_r(-1 + _ - I (9.21)

In particular,ifwe choosea = _,',then the (-_',oo) synthesisproblem associatedwith G in (9.11)is

solvable.Hence,a bound of theachievableu-indexin (9.10)iso". The solutionQ of (9.15)can be found

in [67].The correspondingcontrollerK can then be computed from (9.9)and (9.13).

In Proposition8,_ in (9.8)can be replacedby _r°,sincethereexistsa compensatorIfsuchthatin (9.5)

o-- cr'.Ifr}isverylarge,then o-*can be made closetozeroand thestabilityconditioninProposition8,

42



(9.6) , is satisfied for very large AP ! "robe more specific, if r/>> 4, then _ 1 + _ and or" _ 0.

IIence, if r/is large (much greater than 4), then only the unstable part of the high order system needs to be

modeled for the compensator design (resulting in a lower order controller); otherwise, more stable portion

needs to be incorporated into the nominal plant until AP becomes sufficiently small so that (9.6) is satisfied.

This trade-off of achievable v-index versus the order of controller is a unique feature of our approach in

contrast to the small gain approach in [45].

There are two straightforward generalizations. So far, discussion is limited to square plants. The same

analysis holds for a non-square plant if it is "squared up" with zeros. Another generalization is to modify

p+Ap by stable and stably invertible weightings, W1 and W2, so that the open loop plant is WI(P+AP)W_

(the idea is used in [60]). This modification may affect the size of ,7.

10. Examples

Several examples are given in this section to illustrate several aspects of the results in this report. In

the first example, we consider the linear quadratic regulator (LQR) problem. The well known (_, oo) gain

margin and (-_, _) phase margin [22] in the control channel are demonstrated by showing the transfer

function around perturbation in the control channel is positive real. Robustness issues related to parameter

variations ( AA and AB ) are also discussed. The linear quadratic gaussian (LQG) controller is considered

in the second example. The good robustness margin does not exist in general in this case. However, if

certain transfer matrices are minimum phase, then loop transfer recovery (LTR) [72] method can be applied

to approximately recover the margins in either the input or the output channel. The third example considers

a one-dimensional heat equation. The first part deals with insulated boundaries. We design a one-mode

stabilizing controller for this case. The second part deals with boundaries tied at a constant temperature.

Two computational methods of the u-index are compared: direct solution of a differential equation versus

the finite dimensional approximation. The convergence result in Proposition 3 is demonstrated. The fourth

and fifth examples illustrate directional robustness idea discussed in section 7. Two examples are taken from

[73] which were originally used to illustrate the ability of the maximum singular value to detect vicinity of

an instability region. Here, by deriving robustness margin in each quadrant, we show that robustness can be

greatly improved if the nominal gains are changed. The last three examples address the use of multipliers.

The first one is a simple harmonic oscillator with uncertain resonant frequency [16]. The second one has

appeared in several papers on the Lyapunov-based robustness analysis [14,15]. The last example is from

[7,1]. In each of these cases, we show that our approach gives superior results.

10.1 Robustness of Linear Quadratic Regulator

The linear quadratic optimal control problem is one of the most studied problem for infinite dimensional

control systems. In this section, we will use absolute stability and hyperstability developed in previous

sections to analyze robustness margins with respect to uncertainties in the control channel. This problem

is well understood in finite dimensions, for example, [22] and [23] showed that finite dimensional linear

quadratic optimal controllers possess [-_,oo) gain margin and [-_, _] phase margin. We will generalize

these results to evolution systems in Hilbert space.

Consider an evolution system in IIilbert space given by (1.1) . We will consider the full state feedback

case, so C = [ and D = 0. The input u is selected to minimize the following performance index:

5J - ((Qz(t), z(t)) + u(t)TRu(t)) dt , (10.1)
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where Q > 0, R_,0 are bounded operators. From [75], [§4.4,47], the optimal controller is given by

,_(t)= -R-'_'x(t), _B'P., (lO._)

where P is the solution of the algebraic Riccati equation

(A'P + PA + Q - PBR-tB'P)z = 0 for all z E D(A) (10.3)

If (A, B) is exponentially stabilizable and (A, Q½) is exponentially detectable, then (10.3) admits a unique

positive solution P such that A - BR-tC generates an exponentially stable semigroup [Corollary 4.17 and

Theorem 4.18, 47].

As in (2.6) , P can be written in the integral forms

Pz = F U_(r)(O + O'R-tO)Uc(r)z dr (10.4)

= _ (10.5)U;c(,')(q + 2,1_'R-_')U,c(_')=d,- ,

where Uc(t) is the Co-semigroup generated by A - BR-tC and U_¢(t) is the C,--semigroup generated by

A-(½ +_)BR-1C. Following lemma shows that Uc and Un¢ are both exponentially stable Co-semigroups.

Lemma 6. Given A, B as in (1.1) , Q _> 0 and R'_0. If (A,Q$) is detectable and there exists a

self-adjoint, positive P E £(X) and G E £(X, Rm) such that

(P(A + BG)z,z) + (z, P(A + BG)=) + (Qx,z) + (G'SGz, z) : 0 (1o.8)

for all z E _)(A). Then (A + BG) generates an exponentially stable Co-semigroup .

Proof: The proof is given in Appendix XI.

By settingG = -R-tC 'and S = R in (10.8),itfollowsfrom Lemma 6 thatthe Riccatiequation (10.3)

impliesthat Uc isexponentiallystable.IfG = -(_ + _7)R-tC and S = 2r/(_+ r/)-2Rin (10.6),then

(10.3)impliesthatU_c isexponentiallystableforall17> 0.

The main result on the robustness margin can now be stated.

Theorem 5. Given the following linear time invariant system in a Hilbert space:

= .4=+ B_:(-C'=),=(o)= =oE x, (1o.7)

where C isdefinedby (10.2).Assume that(A,Q½) isexponentiallydetectable.Considerfollowingclasses

of£:

1.£(t,u) :R+ x Rm -* R+ x Rm isa bounded functionforeacht and

=T(__ _i)(R-==) _ _,ii=ll= , (t0.s)

[orsome # > 0,alltER+andallzER m.
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2. £ is an exponentially stable linear time invariant system and (£ - _I)R -l is strictly positive real.

3. £ : L,.,(R '_) -- L_,(R m) is bounded in the sense that there exist constants 7t, "r_ such that

II :(z)ll, _<71+"r2 Ilzll, , (lO.9)

and dissipativein the sense that there existpositiveconstants _t and _ such that

<(£-lI)R-tz.z>t>_-_t + _2,,z,lt _ (10.10)

If/: belongs to the firsttwo classes,then (10.7)isexponentially stable.If£ belongs to the third class,

then (10.7)isasymptotically stable.

Proof: Write (10.7) as

1 1
= (A - (2 + r/)BR-IC')z + B(£ - (2 + tl)I)(-R-ICz) (10.11)

This system can be represented in the interconnected form as in Fig. 1. The forward system is described

by (i.i) with state space parameters (A- (½ + r_)BR-tC, B,C,O). The feedback system isof the form

(£ - (½ + r/)l)(-R-t-). Since the forward system isexponentially stableby Lemma 6 and (10.3)implies

that the Lur'e equations are satisfiedwith e = 0, the forward system isalmost strictlypositivereal. By

properties3 and 4 of Proposition 9, u--indexof the forward system isnon-positive. The stated resultfollows

by applying Corollary 3for £ in class1,Corollary 5 and Remark 10 for £ in class2 and Corollary 6for £ in

class 3.

Remarks:

17. When _ and R -t are both diagonal,stabilityconditions in Theorem 5 can be stated in a more

concise form. If£:islinearand real,then the stabilitycondition £:iE (½,co) can be considered as the gain

margin. If £i = e/_, then the stability condition _bE (-_, _) can be considered as the phase margin. If each

g:i is a linear time invariant system with Laplace transform Li(s), a condition for stability can be simply
stated as

1
<

Even though LQR offers impressive gain and phase margins, there is no guaranteed robustness margins

against other types of perturbations, e.g., perturbation of A, B operators, directly. Wewill consider a simple

example in [76] in which the stability margin with respect to a parameter in B can be made arbitrarily small.
Let

0] [,] [: ,] [:]A= 0 -2 B= 1 Q = 1 R=r>0 AB= (10.12)

The system is governed by

= Az + Bu + TABu (10.13)
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Nominally,7 = 0. Rewrite (10.13) as

= Az + (B - 71AB)u + (7 + 7,)ABu , (10.14)

where -71 is tile design lower bound for 7- Let u = -Gz be some controller such that A - (B - 7zAB)G

is strictly stable. From the Corollary 3, G should be chosen to minimize the v-index of the system T that

has tile internal parameters (A- (B- 7tAB)G, AB, G,0). Then 7 E [-71, _- 7x) preserves exponential

stability. To ensure the nominal case, i.e., V = 0, is included in the stability range, it is required _ > "/i.

Clearly, there is no reason why LQR design will always yield good margin since T is not guaranteed to be

positive real. Indeed, as shown in the following table, the margin for the positive variation of 7 is infinite

but the margin for the negative variation becomes very poor as r becomes small ( increasing performance ).

r v(T) u(-T)

10-2 0 1.43

I0-a 0 3.07

I0-4 0 6.12

Table. 1 The Lack of Robustness with respect to Input Matrix Uncertainty in LQR

This case demonstrates the advantage of a directional robustness measure, since the nominal value of

can be chosen sufficiently large to provide arbitrary robustness about the nominal.

In this example, a different LQR design yields both good robustness margin and stability margin ( in

terms of distance from the j_-axis ). Let a be the or-shiR for the guaranteed closed loop stability margin

[22]. Let the required underbound for 7 be -.9 ( it cannot be less than -1 since the a-shifted system

becomes unstabilizable for some 7 )- The following table shows the robust stabilization design objective can

be met:
7* r v(To)

0.9 I0-_ 0

0.9 10-3 0

Table. 2 Robustness Margin with respect to Input Matrix Uncertainty

10.2 Robustness of Linear Quadratic Gaussian Controller

When only output is available for feedback, a state observer is typically used to reconstruct the state.

By the separation principle, full state feedback control law used in conjunction with the estimated state

stabilizes the open loop system. In this example, the LQR controller is used for the estimated state feedback

and a Kalman filter type of design is used for the state estimator. Together, this combination is termed

LQG controller. However, no stochastic connotation is intended here.

The Kalman filtertype estimator isof the form

= (A + BG + KC)_ - _r_y (10.15)
u =G_

where K, G are
G = -R-*BTp = -R-*C

K = -HCTN-*_ = -BN-*

The matrices P > 0 solves ARE and H > 0 solves the dual Mgebraic Riccati equation (DARE):

AH + HA T + M - HCT N-ICH = 0

(10.16)

(lO.17)
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First consider a perturbation in the control channel. The true plant is now governed by

- Az + B£u

Close tile loop with the LQG controller, the closed loop system is described by

= (A - BR-_C - BN-IC)_ + BN-ICz

In tile state and estimator state error ( e = _ - z ) coordinate

[:]=[v a. [:]+[-',]=°

Aa - ,4 - BR-IC A_ = .4 - BN-IC

By design, Aa and AK are exponentially stable. In the transformed domain,

9 = C@i[_N-iCi2 B_*

-_T(s)fi

(10.i8)

(10.19)

( o.2o)

where @x - (sI- AG)-* and il -- (81- Ate) -1. Since (I-(1- @)T(s)R-1)-IT(s) is in general not positive

real for a E (½, co), the guaranteed stability margin no longer holds as in the LQR case. For. a specific design,

the robustness margins can be calculated as in section 5. When the plant is minimum phase, a method has

been proposed in [9,72] to drive RF[T](w) to zero over arbitrary range in w. This technique has been termed

as the loop transfer recovery / linear quadratic regulator (LTR/LQR) method. Suppose the estimator gain

N is parameterized by a parameter q such that there exists some W > 0 such that K(q) --* -BWq as

q ---- co. Then

T(jw) = q(_iBWC(sI - A + qBWC)-IB

= C'_tB(I + qWC(sI - A)-tB)-IqWC(sI - A)-IB

If q is sufficiently large over the bandwidth of C(sI - A)-tB ( the open loop transfer function ), then

T(j_a) ._, CiI B

which has been shown to be positive real in example 5. If this approximation holds true over the bandwidth

of C_iB, then the excursion of RF[T](w) into the negative region is small, since C@xB is strictly proper.

Given arbitrary ex and e2, there exists q large enough ( compared with both the open loop bandwidth and

the closed loop LQR bandwidth ) such that -- --

>[ RF[C4,1B]-,x forw_<wlRF[T](_)
- [,-_2 for w > wl

IIence, v(T) < max(el,e_). Similarly, v((I- ½TR-I)-IT) can be made arbitrarily small by choosing q

large. It is in this sense that the robusfness margin of LQR is recovered. The estimator gain K with the

above property can be achieved in the Kaiman filter design by modifying the state noise covariance M to
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M + q_'BB T and assume the plant is minimum phase. This fact follows directly from the cheap control and

perfect regulation problems [78,79].

A similar technique exists for perturbations in the output channel, i.e., the true output is given by

y = £Cz

Itcan be directlyverifiedthatintheclosedloop

= - z),j

For minimum phasesystems,thelooptransferrecovery/ Kalman-Bucy filter(LTR/KBF) techniquewas pro-

posedin[80]todriveT(s)closetopositivereal.Thisscheme usesthefactthat(/-(I-_r)C_2BN-I)-tC4_2B

ispositiverealforo"E (_,co).To achievethe recoveryinthe same senseas the LTR/LQR case,the state

penaltyismodifiedtoQ % q2cTc. Then, as q ---,oo,G ...*-qR_C q"and T(jw) -.-,C_2B pointwiseinw.

To demonstratethatv(T) can be used as a measure of'robustnessmargin with respectto perturbation

inthe controlchannel,even though theloopshape isfaraway from the LQR case,we use a simpleexample

from [77]. Consider

Then

,] [0]A-" 1 B=

G - -[I 1]f

The actual system is assumed to be

C=[1 0]

[11] /V=.M= 1 1

I=2+ 4v/_- _

d=2+ 4"v_"_

= Az + taBu

To ensure lower bound of m, rewrite the equation as

(10.21)

:i: = Az + mtBu + (m - mt)Bu , mt > 0

Now designthe LQG compensator for(A,mtB, C). With the parametersas specifiedin [77],we have the

followingrobustnessmarginsform (the actualmargin and thepredictionbasedon v-index):
v(T) u(-T)

rnt q o" (v(T) -z) (v(-T) -z) guaranteed margin actual margin

I 1 I 20 (0.05) 14.3 (0.07) (0.93,1.05)

1 10 10 25 (0.04) 12.5 (0.08) (0.92,1.04)

1 I000 I000 142 (0.007)11.1 (0.09) (0.91,1.007)

Table. 3 v-Guaranteed Margin vs. Actual Margin, without LTR/LQR

We next apply the LTR/LQR technique to improve the stability margin.
below:

[0.92,1.05]

[0.92,1.04]

[0.91,1.007]

The results are summarized
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ml q

LTR v(T) v(-T) guaranteed actual

parameter(v(T) -1) (v(-T) -1) margin margin

Table. 4

i 1 i I 13.22(o.ov)10.22(0.09) (0.91,1.07) [0.91,1m]
1 1 1 10 6.52 (0.15) 7.23 (0.14) (0.86,1.15) [0.86,1.15]

I i 1 100 2.86 (0.35) 4.42 (0.23) (0.77,1.35) [0.77,1.35]

1 1 1 1000 1.36 (0.73) 3.09 (0.32) (0.68,1.73) [0.68,1.73]

0.5 1 1 10 1.32 (0.75) 5.22 (0.19) (0.31,1.25) [0.31,1.25]

0.5 1 1 10 0.21 (4.77) 4.14 (0.24) (0.26,5.27) [0.26,5.27]

v-Guaranteed Margin vs. Actual Margin, with LTR/LQR

As indicated by these cases, the v-guaranteed margin is almost identical to the actual margin.

10.3 One-Dimensional Heat Equation

10.3.1 Insulated Boundaries

In this example, we design a stabilizing compensator for a one--dimensional heat equation with insulated

boundaries. Consider the following system

Ou 02u
O'-_= _ + b(z)f(t)

y(t)=< c, u >

u=(t,0) --u=(t,i) (10.22)

X=L2{O, 1] ,

Since A isof compact-normal

=0

02

A= az_ , D(A)--{u•Hu[0,1]:u=(0)=u=(1)=0}

resolvent,the solution can be put into the modal form

oo

u(t. _) = _ u.(t)¢.(=)
n=0

un = --n2_r2un "1"bnf

Y --" 2=,,,# Cn Un

n----O

,;bo(Z)- 1 , ,;b.(=) = V_cosn_'z

b,., =< b,@n >

c. =< c, _n >

Assume cobo _ 0 for stabilizability. This system has a single marginally stable mode, all the rest of the

modes are in the open left half plane. We want to design a stabilizing controller based on an one-mode

approximation. Write the infinite dimensional system in the perturbation form in the s-domain,

cob° - co Cnbn -

y = Ts + _, :_D'._ f

= (_--p)u+(p+ sgn ( cabo ) A )u

where u -- sgn (cobo)_f, _ is an arbitrary constant to be specified later, _ is the exponentially stable

unmodeled dynamics and p is an underbound for sgn(c°b°)A
Let the control law be a simple output

feedback "

u = -gy
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Then the closed loop system can he written as

g s sgn (cobo)A
_._._, .-( + p)y

Y = (1 -- pg) (s + #(l-pc)) /_

Clearly, if
1

0<g<- , (10.23)
P

and sgn(cobo)A+ P/_isstrictlypositivereal,then the closedloopsystem isexponentiallystable.SinceA

isexponentiallystable,itissufficientto have

IIZ_ll.. < p_ (10.24)

IIence,ifan upper bound ofthe Hoo norm ofthe unmodeled dynamics isknown, thenforany g > 0,there

existD and p so that (10.23)and (10.24)axe simultaneouslysatisfied.Finally,

controllaw isgivenby

S =-s_ (Cobo)_y

the one-mode stabilizing

(I0.25)

Note thatthe magnitude ofthe feedbackgainisbounded by "_..

10.3.2 Constant Temperature Boundaries

We now consider the a perturbed heat equation with both boundaries tied at a fixed temperature. The

equation governing temperature evolution is given by

Ou O_u
= _ - b(x)a(v)

v = (c,u)

X-L2[0,1] , b, cEX (10.26)

A zx0_u

V(A) = {_ _ H_([0,1];a): _(0) = .(1) = 0}

Note that /-/'2([0, 1]; R) denotes the Sobolev space of functions whose first two generalized distributional

derivatives are in L2([0, 1]; R).

To find a class of A that preserves stability by using absolute stability and hyperstability, we regard the

system described by (10.26) as a feedback interconnected system where the forward system has the state

space parameters (A, b, c, 0) and the feedback system is A. Assume A is locally Lipschitz. Then, as discussed

in Section 4, a unique local mild solution exists.

We first consider the computation of the v--index of the forward system by solving _,o = (jwI - A)-Ib.

This is equivalent to finding _ that satisfies

fio_,o Oz 2 = b(z) , _,0 E _D(A) (10.27)

The solution is given by the variation of constant formula and the boundary conditions for elements in _D(A)

1
f sinh(v/_(z - r))b(r)dr (10.28)sinh Jv/_z ]" sinhv/_(1 - r)b(_') dr- _ JO_(z) = v_sinh Jx/_ J0
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and the realnessfunctionisgivenby

RF(_(,Z- A)-'b)(_) = Re _,/j'_.inh_,/_ _(=)_inh_/_.d= sinhv'_(1 - _)b0")d_--
(io._9)

1 I

.1o ,1o

Alternatively,the realnessfunctioncan alsobe computed by modal decomposition.The solutionu can be

expanded as
OO

.(t, =)= _..(0_.(_)
n--O

_.(=) = V'2sinA,,: , A,,= n_
(10.30)

By directcomputation,we have

Therefore,

n'-'O

(10.31)

(c, (b,
RF(c(sI - A)-tb)(w) = Re

= _ ;_.(o,_b.)(b,4,.) (I0.32)
_2 + A4

n-_--0

The v-indexofthe nominal forwardsystem,c(sI- A)-Ib,can be computed by takingthe infimum ofthe

realnessfunctioncomputed by eithermethods describedabove. A classof A thatmaintainsstabilityof

(10.28)can be obtainedby usingresultsinSection4. Note thatifb --c,which means thatthe sensorand

actuatoraxecolocated,thenfrom (I0.32),thev-indexofthe nominalsystem (withA - 0)isnon-positive.

In thiscase,thenominal system ispositiverealand any bounded, non-negativeA does not destabilizethe

system.

1 = e [.45,.55]c(z) --
0 otherwise

1 = • [.1,.15]b(z) = 0 otherwise

For a numericalexaxnple, let

The plotof the realnessfunctionscomputed based on (10.29)and (10.32)( with 5-mode, 10-mode, 15-

mode and 20-mode approximation)isshown inFig. 9. Errorsin the realnessfunctionsbased on modal

approximationsare shown in Fig.10. The v-indicesof thesecasesareshown inthe tablebelow:

Approximation v-index

5-mode 2.94x I0-s

10-mode 3.85x 10-5

15-mode 3.63x I0-s

20-mode 3.82x 10-s

exact 3.62x I0-s

Table. 5 Comparison of v-indices
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10.4 Diagonal Uncertainties: Example 1

Consider the following 2-input, 2--output plant

1 [ s- 100 10(,+ 1)1
G(s) = (s+ 1)(s+ 2) L-10(= + I) • - 100 J

Suppose the loop isclosed with negative feedback of the followingform

0 l+k2

The objectiveis to characterLzerobustness margins with respect to kl and k2. Rearrange the closed loop

with transferfunction Y in the forward path and diag{kt,k2} in the negative feedback path. Then

T= _ -10

The u-indices are four cases of positive or negative variations in kt, k2 axe listed below:

(10.33)

kt k2 _-hdex v -I

+ + 0 oo

- - 1 1

- + 10.05 0.1

+ - 10.05 0.1

Table. 6 Stability Marginsfor Example 4

The exact stability margin, the #-measure based stability margin and the stability margins from Table 6

• re shown in Fig.ll. This example has been used in [73] to demonstrate the ability of the singular value type

of robustness measure to detect closeness to instability. The Hoo norm of T is 10.05 which corresponds to

the worst case margin in Table 6. However, Table 6 provides much more information in terms of robustness

margins in different directions of parameter variations. In this particular example, stability margins from

Table 6 indicate that with different set of feedback gains (both kl and k2 positive), arbitrary robustness with

respect to kt, k2 can be attained.

10.5 Diagonal Uncertainties: Example 2

This example is also from [73]. Consider a two-input/two-output plant with transfer function

1 [-47,+2 55s ]G(s) = (s + 1)(s + 2) -42s 50s + 2J (10.34)

Again close the loop with negative feedback of the following form

0]0 l+k2

where the nominal values of kt, k_ are zero. The objective is to characterize robustness margins with respect

to /ct and k2. Rearrange the closed loop with transfer function Y in the forward path and diag{kt, k:} in

the negative feedback path. The robust margin is listed in the table below.
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kt ku v-index v -t

Table. 7

+ + 7.92 .13

- - 8.42 .12

- + 16.25 .06

+ - 0.50 2

Stability Marginsfor Example 5

The H_o norm of T is 16.3 which yields a margin for kt, ks of 4-0.06. The exact stability margin, the

p-measure based stability margin and the stability margins from Table 7 are shown in Fig.12. Again, the

u-index based margins in Table 7 provides more information than the small gain based margin. It also points

out the direction in which kt and ks should be moved ( kl negative and ks positive ) in order to enlarge the

stability margin.

10.6 Multiplier Method: Example 1 ( Damped Harmonic Oscillator )

Consider a simple damped harmonic oscillator with uncertain frequency:

[0 :]z= -(1+o)_ _ _

:,]_ o,o 
where 0 is nominally zero. The transfer function around 0 is

A straightforwardcalculationshows that

Therefore, if

u(T) = _
(_o + _2)

u(-T) = 1

(10.35)

-Wo2 < 0¢_ < 2_w, +_ 2 (10.36)

then the perturbed system remains exponentially stable. This is clearly very conservative, especially for

lightly damped system.

If the multiplier zt(jw) = l+qjw is used, then so long as q{ > 1, v(Tzt) < 0. Hence, for all # E (-1,_),

the system remains exponentially stable. By direct computation, we know this bound is non-conservative.

The same bound is also obtained if the multiplier z2 = 1 + qj is used.

10.7" Multiplier Method: Example 2

The example in this subsection has been previously used by several authors to test their Lyapunov based

robustness analysis methods [15,14]. Given

[:0 0] [i!]A= -2 0 B= C- 0 1
0 -3
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Wewant to characterize a class of diagonal A such that (A - BC + BAG) is exponentially stable.

forward system in this case is

T = -C(sI - A + BC)-tB

Th_

The stability margins, with and without multipliers, in each quadrant of the uncertain parameter space are

shown in tile table below:

kl k2 v(T) v(zlT) v(z2T)

+ + 0.5806 0.5806 0.5806

- + 0.3358 0.3358 0.3358

+ - 0.5739 0.5739 0.5739

- - 0.0117 0 0

Table. 8 Robustness Margins in Example 7

The worstcasequadrantgivesa margin of_ = 1.722which isbetterthan allthe previouslypublished

margins.The multipliermethod revealsunlimitedrobustnessmargin inthe {-,-} quadrant.

10.8 Multiplier Method: Example 3

Next example has appeared in [74] and contains three uncertain elements. The system is given by

= Az + IIIAAH,: + Bu + FIABF2u

y= Cz

u= Kp

The parametersaregivenas below:

A __

•-0.0366 0.0271 0.0188 -0.4555] I'0.4422 0.1761 ]
0.0482 -1.010 0.0024 -4.0208[ |3.5446-7.5922|

0.100200.36810 -0.70711"4o2°° J B = L_5o52409 j

[i!I IoEl= F2= o o

[i]_ = _ = [1 0]

C=[0 1 0 0]

The uncertaintyAA isassumed tobe diagonaland As is a scalarconstant.

Two controllersare statedin [74]: a nominal controller

[- 1.63522 ]
Ko = L1.582236 J

and a "robustified" controller

[-0.99633989]K" = [ 1.801833665
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For the nominal controller, the v-indices in each

pl p2 _ u(T) v(zxT)

+ + + 1.41 0.7

- + + 1.45 0.78

+ - + 1.13 0.67

+ 1.14 0.28

+ + - 1.37 0.63

- + - 1.44 0.74

+ 1.17 0.87

1.18 0.33

Table. 9 Robustness Margins

quadrant, with and without multipliers, are listed below:

v(z2T)

0.81

1.46

0.23

0.33

0.59

0.73

0.24

0.23

in Example 8, Nominal Controller Case

For the controller K °, the v-indices are listed below

px p2 _ v(T) u(z_T) u(z2T)

+ + + 1.52 0.83 0.89

- + + 1.57 0.96 1.59

+ - + 1.15 0.51 0.25

+ 1.18 0.58 0.36

+ + - 1.50 0.76 0.77

- + - 1.55 0.97 0.92

+ - - 1.17 0.21 0.21

- 1.19 0.31 0.29

Table. 10 Robustness Margins in Example 8, Robustified Controller Case

The multiplier zl produces superior margins than z2 in this case, though no general comparison can be

made. The worst case margin in the No case is _ = 1.15 and in the K" case is ...1_ = 1.03. Both satisfy0.97

tile specification, 0.0648, and are much better than the margins given in [74]. Ironically, our margin for the
nominal case is better than the robustified case.

1 I. C onclusion

We have presented a new approach to robustness analysis and compensator synthesis for evolution systems

by using a passivity approach. The abstract evolution equation setting is chosen so as to include applications

to distributed parameter systems. Our results are based on the stability conditions involving the sector

bounds of two interconnected, sector-bounded (in a general sense) systems, which are derived from the

passivity theory (in the form of absolute stability and hyperstability). These conditions can be interpreted

in the context of robustness analysis when one system is the nominal closed loop control system and the

other the perturbation. When specialized to diagonally structured perturbations, the stability conditions

are sharpened by using the multiplier technique. When, furthermore, each diagonal element is linear and

constant, we introduce the concept of "directional robustness" which measures robustness in each quadrant

of the perturbation parameter space. These ideas also have applications to nonlinear systems (i.e., nominal

system is nonlinear), though the full generalization is not yet completed. In terms of controller synthesis, we

use the fact that a sector synthesis problem can be converted to a small gain synthesis problem, for which
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tile solution is known. This technique is applied to the finite dimensional compensator design for an infinite

dimensional system. An intuitive and powerful result followed: If the unstable part of the open loop system

can be stabilized such that certain transfer function is close to being passive, then only crude approximation

of the stable part of the open loop system is needed for the design of a stabilizing compensator. If the smallest

II_mkel singular value of the conjugate of the unstable part is large, then the desired passivity property can

be attained, meaning no information about the stable part is necessary for stabilizing compensator design.

Tile full range of issues relating to controller synthesis based on the passivity approach remains to be fully

explored, however, especially for the structured uncertainty case. As the many examples and applications

in this report witness, the passivity approach presented here is a viable and useful tool for robustness

analysis. Preliminary results also suggest its usefulness in the controller synthesis problem. It complements

well existing small gain based techniques such as the Hoo-norm and /J-measure. Future agenda in this

direction of research includes continuing investigation into the synthesis problem, especially for diagonally

structured uncertainties, and generalization to unbounded input and output operators to allow consideration

of boundary sensing and actuation.
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Appendix

Appendix I Proof of Lemma 1

Let t E [0, T], T < oo. By using the semigroup property of U(.) and a change of variable, V(z(t)) can be
written as:

V(z(t)) " : iR [U(t + r)Zo+ L'U(t +r-s)Bu(s)ds] ,

[U(t + r)zO + /o'U(i + r- s)Bu(a)da]) dT

= : lR [U(r)Zo + /o'U(e- s)Bu(s)ds ] ,

[U(T)ZO + /o'U(r- s)Bu(s)ds]! dr (A.1.1)

We first show that the integrand of (A.1.1) belongs to L1 for each t E R.

fo°° IIR [U(r)z° + foiU(T-s)Bu(s)da ] ,

[U(T)Zo + _i U(T --s)Bu(s) da] >I dT

(by the Schwarz inequality)

By assumption, u ELl.. Hence, the integral in (All) is absolutely continuous (therefore, differentiable)

with respect to the its lower limit of integration. Denote the derivative by I1, then

It=-IR IU(t)zo + L l U(t- s)Bu(s) da) , (U(t)Zo + /o t U(t- s)Bu(s) ds) >

= - (Rx(t),z(t))

To show continuous differentiability with respect to t within the integrand in (A.I.1) , we first note that for

each T E R+,

< co (by the Schwarz inequality and the L1, assumption on u)

IIence, fo U(T -- s)Bu(s) ds is absolutely continuous with respect to t for t 6 [0, T) and is therefore differen-

tiable. Denote by ]'2 the derivative of the integral in (A.I.I) with respect to t in the integrand, then by the
chain rule

12=2 ft °° IRU(r-t)Bu(t), [U(T)z.- io l U(T-- s)Bu(s)ds]) dr

=2 _oo IRU(T)Bu(t), [U(T +t)z. + foiU(r +t - s)Bu(s)ds]) dr

(by a change of variable)

= ?

= 2 (eBu(t), z(t))
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Summarizingthe above, we have: V(z(t)) is differentiable along the mild solution and its derivative V(t, z(t))

is given by

_'(t, x(t)) = - (Rx(t), _(t)) + 2 (PBu(t), z(0)

.

Appendix II Proof of Fact 2

The factorization of PR systems is standard [81,53,25]. The second implication follows from the fact

a_,'o'_ = IIVwll2

2. By definitions.

3. Follows from inf_,(ab(jw)) = [a[ inf,,(sign(a) b(jw)).

4. Follows from inf(a + b) >_ infa + infb.

5. Follows from [RF(U + cI)](w) = e + [RF(U)](_).

6. Followsfrom I[RF(+U)](_)I _<IIUII-.. for a_ _.

7. By definition

_F(u)> - l_n[RF(T)](_)= 0

S,

10.

9. The inequality follows from

vF(K'UK)=-inf inf Rew'K'U(fia)Kw
'_ Ilwll=x

< - inf #rain (U(jw))O'2min (K)

= v(U)a2mia(K)

,,(u) = ,,(v'wv)

< - _fpmin(W(jw))o'2min(V(jw))

_<v(W) inf _in (V(jw))

The firstequality followsfrom

inf Rew'U(jw)Kw =
Ilwlt=t

For the second equality, first note that

[- inf infsup
K Unitary {. " Ilwll=t

inf Re(Kw)'KU(Kw)
IIK_ll=t

Rew'U(j_)Kw] = sup sup Rew* (-U(j_)) z
w IlwJl.l

II*ll=x

Clearly, the right hand side is bounded above by IlUll_.. Given e, let W_EW2 be the singular value

decomposition of -U(_) where IIU(j_)ll = IlUlln. - ,. If w and z are chosen so that Wtw and W_z
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II.

-_

are the unit vectors with 1 as the first element. Then sup sup Rew'(-U)w can be arbitrarily close to

II.Ilfz
IIUlitt.. Hence, they are in fact equal. The last inequality follows similarly.

Clearly,

inf Re_'U_ = inf S_'U,_, > inf 5-',m,._U+_"w," _= min /-/rain(U/)

ll_,ll=t _"_.,llw,IP=1k.._---i - _--_+,llw,ll==14.._ ----..,.i

The lower bound can be attained by choosing I[wi[[= I foricorresponding to the minimum/Jmin(U_) and

llwill- 0 for the rest.Hence, the inequalitycan be replaced by equality.After taking the negation of the

infimum over allw, the stated resultfollows.

12. From statements 2 and 4 above,

l_(U)- _(V)l<-_(u- v)S llU- Vllx.

Appendix HI Proof of Proposition 3

We first state a simple lemma.

Lemma A.3.1.

Given complex matrices Gx, G2, the following inequality holds:

_min(Gl) -- #rain(G2) <_ HG1 - G211

Proof: The inequalityfollowsfrom directmanipulation:

Urn,.(G_)--_i. (G2)

= inf Re (Gtz, z)- inf Re (G_z,z)
•GC" ,EC"
Ilzll=t IlzlJft

< inf Re (Gtz, z) - Re (G:v, v) + e
s_Clmt

Ilzll=t

(Given any e,there existssuch v, [IvH- I.)

<_Re((a_- G2)v,v)+

_<liar - a211+ +

Let _ ---*0 to complete the proof.

Now we proceed with the proof of Proposition 3. The difference between the approximate transfer function,

Tn, and the actual transfer function, T, can be overbounded in norm as below:

IIT_(jw) - T(J_,)II

< liD,, - Dll + M IIBII IIC,, - Cll + _ IIC,,ll liB,, - BII
o" o"

+ IIC,,llIIB,,III1((./,,,I- a) -t - (./,,.,x- A,,)-')II

(by using (2.13))
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Tile first three terms converge to zero independent of w. Let G be any compact set in R. By Trotter-Kato

Theorem [1,46], the last term converges to zero uniformly for ta E fL Hence, Tn(jw) ---* Tijw ) uniformly for"

w 6 f2. By Lemma A.1, RF(T,)(w) ---. RF(T)(w) uniformly for w EfL

Appendix IV Proof of Theorem 2

(2) ==_ (1)

Consider the optimization problem of finding ,i E L2((-oo, oo); Rm) to minimize

J! = /_: {-_'(jw)FTF_(jw) _ + 2d*(jw)_(jw)} dw

where the superscript" denotes complex conjugate transpositionand _ ,?)and d are the Fouriertransforms

of z, y and u, respectively.By writing f in terms of the initialcondition and the input, the optimization

index can be expanded as

J! = ___ { - ((j.,I - A)-tZo + (jwI - A)-I BC_(jw))" FT F ((jwI - A)-tZo + (jwI - A)-t B¢_(jw))

+ f_'(jw) [(C(jwZ -- A)-I)B + D)" + (C((j,vI - A)-t)B + D)] _i(jw)

-

Consider the problem as an L2-optirnization.Then

Jl =< Rfi, fi > + < r, fi > +k

where the inner products are in the L2 sense. A unique solution exists if R is a coercive £(L2) (the space of

bounded operators in L2) operator. Now,

R = T'(jw) + T(jw) - BT(-jwI - AT)-IFTF(jwI - A)-IB

By condition (2), if

. > [IF(jw[ - A)-tBII_. (A.4.1)

then the operator R is coercive.

By the Plancherel Theorem [82], J! can be transformed back to the time domain as

J = [--z(t)TFTFz(f) + 2uT(f)y(t)] dt

Since a unique solution of the optimal controlproblem exists,the necessary conditions from the Maximum

Principlemust be satisfied.The Harniltonianisgiven by

H = --zTFTFz + 2uT(Cz + Du) + AT(Az + Bu)

where A is the costate or the Lagrange multiplier. The feed forward D in uTDu can be regarded as the

symmetrized D. Since condition (2) implies D > 0, there exists W > 0 such that

D + D T = wTw
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Tile optimal u is obtained by minimizing H:

u = --1W-1W-T(2cz + BrA)

Tile costate equation is governed by

= 2FTFz - 2CTu -- AT)_

It can be shown [83] that )_ depends linearly on z. Let

= -2Px

Then
(PA + AT p 4- FT F)z -- (C - BT p)Tu

= --(C -- BTp) T W- 1w-T(c _ BTp)z

Since the equality holds for all z, we have

PA + AT p = -FT F - QTQ

C = BTp .4-WQ r

The first equation implies P > 0. By defining L = FTF where F is chosen positive definite and satisfies

77o'2min(F) <
II(JwI - A) -x BII_..

condition (1) is proved.

(1) (2)

(When D > O)

Given the Lur'e equations, compute the Hermitian part of the transfer function as follows:

T(jw) + T* (jw)

=D + D T + C(jwI - A)-tB + BT(--jwI - AT)-ICT

=wT w + (Br P - Wr Q)(jcaI - A)-I B + Br (--jwI -- AT)-I(pB _ QTW)

=wTw + Br(-jwI- AT) -t [(--jwI -- Ar)P - P(jwI - A)] (jwI- A)-tB

-- WTQ(jwI -- A)-tB _ BT(--j_I -- AT)-tQT W

=wT w + Br (-jwI - AT)-t(QT Q + L)(jwI - A)-X B - wT Q(jw[ - A)-t B - Br(-jwI _ AT)-tQT W

=(W T + Br (-jw I - AT)-IQT)(W + Q(jwI - A)-t B) + Br (--jwI -- Ar)-t L(jw I - A)-I B

>o

Assume condition (2) is false. Then there exist u,,, II ll - z, and ca,, such that

1
0 << (T(jca,,) +T'(jwn))u.,u,, >< -

rl

As n --_, if can "* OO, then

< (T(Jcan)+T'(Jca,a))un,u., > "* < Dun,un >> rl > 0
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which is a contradiction since the left hand side converges to zero. Hence, un and wn are both bounded

sequences and therefore contain convergent subsequenees u,_b and _o,_k. Let the limits be u, and wo. Then-

This implies

< (r(j,oo) + T'(j,_o)) Uo,Uo>= 0

Wu° + Q(jw° - A)-I Buo = 0
J. .

L2(2_a°I - A)-IBu° = 0

Since L > 0, the second equality implies

(jO;oI - A)-ZBu° = 0

Substituting back to the first equality yields

Wu° = 0

The positive definiteness of W (by the assumption D > 0) implies contradiction. Hence, condition (2) is
satisfied.

.1

(2) ==. (s) -

Since (2) _ (1), the Lur'e equation holds. Let

V(x) = :rPz

Then

l;'(z(t)) = z(t)r pAz(t) + z(t)r pBu(t)

1
= --lzT(t)Lz(t) -- _ IlQz(t)[[ 2 + uT(t)Cz(t) + uT(t)WTOz(t)

1
= -lzT(t)Lz(t) -- _ IIQz(t)ll_ - ur(t)Du(t) + uT"(t)WT'Qx(t) + ur(t)y(t)

1
-< -ff Ilz(t)ll 2+ uT(t)y(t) -- _ IIQz(t) - Wu(t)ll 2

< -2 IIz(t)ll2 + ur(t)y(t)

By integrating both sides, we have, for all T >_0

fo T ur(t)y(t) dt > -V(z°)

Since (2.1)

(A.4.2)

remains valid if D is replaced by D - e for ¢ sufficiently small, (A.4.2) holds with y replaced by

yt = Cz + (D - e)u

Then (A.4.2) becomes

/o /our(t)y(t) dt >_¢ Ilu(t)ll2 dt - V(zo)

Identifying -V(z°) with _(Zo) and _ with p, condition (8) follows.

(8) ==_ (2)
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Let T --, co in (2.30) , then

In particular, for Zo = O,

By tile Plancherel Theorem,

fo ° ,,r(t)v(t) d, > _(Zo)+ p _ Ilu(OII2dt

Fo /ouT(t)y(f) dt > p Ilu(OII2dt

£ £fi'(jw)t_(jw) dw > p II,i(jw)ll2 d_
oO

for all _ E L._. Suppose that for each r; > O, there exists w E C and w, E R such that

w°T(jw)w < I/I1,,,11_

By the continuity of w'T(jw)to in w, there exists an interval fl around we of length r such that

for all w E ft. Let

Clearly, ti E 1;2. Then

and

If

w'T(jw)w < T/I1_,11_

w ifwEfle(jw) =
0 otherwise

f_: _'(jw)y(jw) dw = E _°(jw)T(jw)fi(jw) dw < rr/I1,,,112

p_ II'n(Jw)ll"d., = rp Ilwll2

0 < P, thisisa contradiction.Hence, there existsr;> 0 such that (2.25) holds.

(8) =_ (11)

Condition (11) follows directly from condition (8).

(ii) ===}(8)

The implication isobvious ifZo = 0. In the proof of (8) ::_(2),zo istaken to be zero. Therefore, for

AT P + PA = _QT Q _ L + 2pP - 2pP
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=o= 0,(11)=_(8)=_(2).Ithasalreadybeen shown that(2)::_(8).Hence,(11)=}(2)=_(8).

(1') _ (1)

By definition.
(1) _ (1')

(ifD = 0)

IfD = 0, then W = 0. Rewrite (2.1 a) as



For p small enough,

IIcnce,there existsQl such that

QTQ + L- 2pP > 0

AT p + PA = -QTQ1 - 2pP

Since (2.1 b) is independent of Q1 when D = O, (1') is proved.

(l')¢=_(6)

By straightforward manipulation.

(6)_ (7)

Same as in (i) ==_ (2) except L = 0.

(7) =_ (6)

Standard positive realness lemma (see [53]).

(4)== (7)

By directsubstitution

T(j"` - U) + T'O" - P)

-D + D r + C(j"`I - A - pI)-lB + BT(-j"`I - A T - pI)-lC T

=T(j"`) + T'(j"`) + p [C(j"`I - A)-x(j"`I - A - I_I)-X B + Br(-j"`I - A r - _I)-'(-j"`I - Ar)-lCr]

Therefore, for any w E C m,

w'T(j"` - j,),. > w'T(j"`),_ - 2. IICII [[BI[ [[(j"`Z - A)-'[[ [I(j"`X - A - H)-'I[ [[wl[ 2

Since

It follows [56]

II(J"`Z- A)=II _>I( I"`1- IIAI[)I1=111

1

[l(J"`Z- A)-III< II"`I-IIAIII
Then

2. IlCll IIBIIIlu,II2
_,'T(j"` - _,),,,>_,,,'T(y"`),,,- I1"`1- IIAIIII I"`1- IIA+ u,rlll

By (2.27 a), for allw E f_,_ iscompact in R, there existsk > 0, k dependent on ft,such that

w'T(j"`)w )_ k II,,,ll2 (A.4.3)

By (2.27 b), for w sufficientlylarge,there existsg > 0 such that

va'T(J"`)w > A t1''11= (A.4.4)

Hence, there exists "`1 E R large enough so that (A.4.3) and (A.4.4) hold with some 9 and/_ dependent on

_aj.. Then, for ["`l < _at,

2u IlCll IIBll I1,..11_
,,,'T(j"` - ,),,, > k I1,,,11= I1"`1- IIAIIII1"`1- IIA+ mqll

> kll_ll=-u{ sup 211clIIIBIIII"II= ) (A.4.5)- ,,,,li<,-,11"`1-tlAII] ] I"`1- IIA+MIll
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and for _.> _1

g 2. [ICTIIlBll [Iwll_
w'T(j_ - i,)w >_._ Ilwll2 I I_l - IIAlllII_l - IIA+ Mill

> --7 g - p sup (A.4.6)- II t- +
Tile terms in curly brackets in (A.4.5) and (A.4.6) are finite. Hence, there exists p small enough such that

(A.4.5) and (A.4.6) are both non-negative, proving condition (7).

(7) :::::} (4)

From (7) _ (6), the minimal realization (A, B, C, D) aseociated with T(jw) satisfies the Lur'e equation

with L = 2pP. Following the same derivation as in (1) =:::} (2), for all w E C'n, we have

w*(T(jw) + T'(j_))w

=w'(W T + BT (--jwI -- AT)-*QT)(w + Q(jwI - A)-I B)w

+ 2.w'BT(--jwI -- AT)-Ip(jwl - A)-IBw

>_2gw'BT(--jwI- AT)-Ip(jwI - A)-IBw

> 2..ram(P),T.,_.(B)
- I Iwl- IIAIlla IlwllZ

Since P is positive definite and, by assumption, cmia(B) > 0, T(j_) is positive for all w E R.

It remains to show (2.27 b). Multiply both sides of the inequality above by w a, then

w2 2. lamin ( P )o'min ( B )
w2w'(T(jw) + T'(jw))w > _["_-- _ Ilwlff

As w 2 -- _, the lower bound converges to 2p,min(P)o'min(B ) which is positive.

(7) _ (5)

If (2.28) is satisfied, T(jw-.) corresponds to the driving point impedance of a multiport passive network

[53]. Hence, T(jw) corresponds to the impedance of the same network with all C replaced by C in parallel

with a resistor of conductance pC and L replaced by L in series with a resistor of resistance .L. Since all

L, C elements are now Iossy, or dissipative, T(j_) is the driving point impedance of a dissipative network.

(5) _ (7)

Reversing the above argument, if T(j¢_) is the driving point impedance of a dissipative network, all L and

C elements are lossy. Hence, by removing sufficiently small series resistance in L and parallel conductance

in C, the network would remain passive. Hence, again by [53], condition (7) is satisfied.

(6) _ (9)

Let

Then

V(t,x)= e"'zTPx

I/(t, z(t)) = 7e'r'zr(t)Pz(t) + le'tzr(t)(pA + AT p)z(t) + e'rtzr(t)PBu(t)

e V(t, z(t)) e7 _ [IQz(t ) _ Wu(t)ll2 + e.ttuT(t)y(t )<_v(t,z(t)) 2 IIPI[

-< - 2 I_ll "r v(t._:(t)) + e"'..T(t)y(t)
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Choose 0 < 7 < 2-'_" Then by comparison principle, for all T >_0,

fo T e'_tuT (t)y(t) >_-zTo Pz,dt

(9)_(6)

Define

where 7 > 0 is as given in (2.30) . Then

7_t
u,(O = e2 '40

Zt
y_(t) = • 2 y(t)

"ft

zi = (A + 2I)zl JrBul

Yi = Czl + Dul

Tile correspondingtransferfunctionis

T_(j_,)= D + C(j_,r- ,4- _I)-_ B

-f
= T(j_,- _)

By setting T = co and z, = 0 in (2.30) ,

By the PlancherelTheorem,

[ uT(t)y_(0 dt >_o

jf__fi_(jtv)(Tl(j_) + T_'l(jt_))fi, (j_) d_ _> 0

Since this holds true for all fit(fla) E L2,

Equivalently,

proving(7).

(9):==*(10)

Use the transformation in

(I0)=:_(0)

T,(j,_) + _(j,,,)> o

7 "t
T(jt_ - -_)+ T'(jto - -_)>_0

(A.4.8)

(A.4.8),thencondition(I0)followsdirectlyfrom condition(9)witha = 7.
2"

IfZo = 0,(I0)_ (9)isobvious.Sinceintheproofof(9)=_ (6),onlyZo = 0 caseisconsidered,itfollows,

['ortheZo = 0 case,(10)::_(9)=_ (6).Ithas alreadybeen shown that(6)::_(9).Hence,(10)=_ (6)::_(9).

(2)==}(4)==.(3)

The implications areobvious.
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Appendix V Proof of Corollary 2

In (A.4.1) in the proof of Theorem 2(Appendix 4), after substituting eI + 7C"TC into FTF, we have the

following sufficient condition for condition 1:

e H(jwI - A)-IB[I 2 + 7 HT,(J_)II 2 < ,I for all _ E a. (A.5.1)

It is straightforward to show that (A.5.1) follows from (2.35) - (2.36) .

Appendix VI Proof of Proposition 4

The first five conditions are standard. The proof of their equivalence can he found in, for example, [53],

[,50]. The equivalence of condition (6) to the rest will be shown here.

(2) _ (6)

By condition (2) , D >_.0. The transfer function of (A, B, C, D -6 pI) is T(jw) -6 pI. Since

T(j_,) + T'(j_,) + 2pZ_ 2pZ

and D + pI > 0, the Lur'e equations are satisfied by Lemma 1. Hence, condition (6) is true.

(6)_ (2)

From condition (6) and Lemma 1, there exists _n > 0, monotonically decreasing, such that for all w E Cm,

1
,:(T(j_) + T'(j_) + -_)w> ,h Ilwll2

As n -. oo, _ -- _1> 0 and 1 _. 0. Hence,

T(j(.) + T'(j_) > 0

proving condition (2).

Proof of Lemma 2

•(t)= cr(t- ,)B,,(_)d_ (A.T.I)

Appendix VII

Define

1. Let Zo = 0. By assumption, z E L2(R+;X). Suppose U(t) is not exponentially stable. By Datko's

theorem, U(.)v f_ L2(R+;X) for some v E X. Consider (1.2) with zo = v; we have an L2-function as the sum

of a non-L2-function, U(t)v, and an Lrfunction, z(t), which is a contradiction. Hence, U(t) "isexponentially

stable.

2. Since U(t) is exponentially stable from part 1, it suffices to show the convergence of z(t) to zero.

Equation (A.7.1) can be written as

/%' f' V'(t
z(t) = .Io U(t - s)Bu(s)ds + J½' - s)Bu(s)ds

= U(s)Bu(t - s)d. + r.r(t- s)Bu(s)ds
t |
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Overboundz(t) by using the Schwarz inequality and the exponential bound of U(I) given by (i.3i, we have

[: j'M IIBII II,,(.)II'ds

Since e -_°_ E Lz(R+; R) and u E L2(R+; Rm), the right hand side tends to zero as t --- co.

Appendix VIII

1.

Proof of Lemma 3

By integrating both sides of (3.1) , we have

_ ll_(t)l12,_< -lv(_(o))< co

Then it follows from Lemma 2 that z(t) --.. 0 as t -* co.

2. Let

v_(t,z)= e2_'v(z)

The derivativealong the solution trajectoryis

, _ < _llell-_

¢:_(t,_(t)) = 2,,:"v(_(t)) + :"v(_(t))

-<_2_'(2o"IlPll- e)IIx(t)ll2

= -;_d" II-(t)ll= , ._> o

By integrating both sides, we get

i 2at

dr < _v(x(0))- _ v(x(t))

< _v(x(0))< co

This shows that e°tz(t) E L2.

3. Since ea_z(t)E L_ by part 2 and e_'u(t)E L2 by assumption, we can apply Lemma 2, with U(t),

z(1),u(t),replaced by eq_U(t) ,e_'z(t) ,eCru(t),respectively,to show that there existsM(Zo) <(co such

that e_"Jlz(_)ll< M(zo). This isequivalentto IIz(t)lI< M(Zo)e -_" for allt > 0.
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Appendix IX Proof of Lemma 4

IfA isnon-negative, then

0 <C --uTy

= -ur(Cz+ Du)

-< 11,4111C'zll-/Jmi.(D) Ilull=

=-_,mi.(D)(llull _ IIC=II "_=+2,mi.(D)/

Itthen followsthat there existsr/> 0 such that

Ilu(t)ll< v II=(t)ll

for all t > 0. The mild solution can now be bounded as follows:

IIC=IP
4#mi.(D)

f0,,"' I1=(011< M I1=011+ M II.Sll _"" II,-,(,')11d,-

< M I1=*11+ r/M IIBII e" I1"(_')11dr

Apply the Gronwell inequality, we get

II=(t)ll __.M II=.lle-C"-"u"a")'

tlence, z does not finitely escape and z E L2.(X). u E L_.(R m) follows from (A.9.1) .

Appendix X Proof of Lemma 5

By assumption, A satisfies the Popov inequality. Therefore, there exists _ > 0 such that

> (u, Cz + Du), > _mi. (D) (11,,11,
IIC_:ll, 2 IIC=ll,2

- - 2._,.(o)} 4._.(D)

It then follows easily that there exist positive constants rh and r/2 such that

Ilull,< vx+ e2t#ll,

Let t E [0,T), T < oo. The mild solutionof T can be bounded by

II=(t)ll_<Me-"' I1=oll+ M IIBII e-"('-') Ilu(r)lldr

Squaring both sides, we have

[I' ]'IIx(t)ll_ <_.2M2IIx.II2 + 2M2 IIBII_ Ilu(r)ll dr

I'_<2M2 llx.ll 2+ 2M2 IIBII2T I1,+(+-)112dr

(by the Schwarz inequality)
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By applying the Gronwell inequality, it follows that z does not finitely escape.

It also follows from (A.10.2) that there exist positive constants a and b such that

/[/: ]'II=ll,2 _<a + b II=(r)lldr ds

/:_<a+b s. IMI,_ds

/:<_ a + 2brl_T + 2btl_T I1=11._d_

From tile Gronwell inequality, we have = E L2.. u E L2. follows from (A.10.1) .

If A satisfies the exponential Popov inequality, identical steps as in the first part of the proof can be

followed with z(t) and u(t) replaced by e_'tz(t) and e°tu(t), respectively, to show that e"tz(t) E L2,(X),

eatu(t) q L2.(Rm), and there exist r/l and r/2 such that

II:=u(s)ll, S _1+ _ Ile"=(s)ll,

Appendix XI Proof of Lemma 6

The proof basically follows the proof in Lemma 4.16 of [47] with slight modifications. Since (A, Q_) is

detcctable, there exists 5' E £(X) such that A+SQ_ generates an exponentially stable Co -semigroup Us(t).

Write

A + BG = A + SQ_ + (BG- SQ_)

Siuce (BG-SQ i) is bounded, we can use the perturbation formula (3.1.2) in [1] to relate the Co -semigroup

Uc(t) generated by A + BG to the Co -semigroup Us(t) generated by A + SQ_:

_0 t
_c(t)= = Us(t)= + Vs(t r)(BC- - SQ_)Uc(r)= dr

From(2.6),

P_ = uS(r)(O + a'aa)Ua(r)= dr

Since P is a bounded operator,

: /0°< Pz, z >= IIQ_UG(r)zll2dr + IIRCar/c(r)xll2dr _<IIPIII1=tl_ < o0

This implies QgUG(-)= E L2(R+;X). Since R is assumed to be coercive, GU'_(.)z E L2(R+;Rm).

(A.1L1),

I'IIUc(t)=ll _<IlVs(t)=tl+ (llUs(t - r)ll _)' (llSll IIGVa(r)=ll + IlSllIIO_v_(")_:ll) dr

By Schwarz inequality,

IIUG(t)=II< IIUs(t)=II+

[_o' llU's(t- r)lldr] _ X [fo '

(A.11.1)

From

1

£ _ "] 2

IIrJs(t- r)ll( IIBIIIICUa(r)_tl+ IlSllIIQ•Ua(r)xll)'d," J
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Squaringbothsides and overbound square of sum by two times the sum of squares, "

IIUa(t)=ll2 _<211Us(t)=ll2+

Jot J_o' (A.11.2)IIUs(t - r)ll d,- x IlUs(t- _')ll(IlCUa(r)=ll2+ IIQ+Ua(r)=ll 2)dr

Since Us(t) is exponentially stable, there exists M __ 1 and a > 0 such that IIUs(t)ll __ Me -at. The last

term on the right hand side of (A.11.2) can be overbounded by

_ e-°('-')(IIGU_(_)=II 2+ IIQ_Ua(r)=ll2)dr

Inte_ating this term with respect to t from O to oo, we have

F ° _' e-°('-')( llOU_(_)=ll2+ IIQ+V'c(T)=II=)dr atc[

= cl _0 c° ff (e-C'(t-')dr) (llGUa(r)zll 2 + [IQ+Ua(r)=ll=) dr (by Fubini Theorem )

I°= c2 (llGUa(r)=ll=+ IIQ_Ua(r)=ll2)dr< oo

The last inequality follows from the L2-boundedness of GUax and Q_Uuz that have been shown earlier.

Now, in (A.11.2) , Us(t)z is square integrable by using Datko Theorem and the exponential stability of

Us(t), and we have shown that the second term is integrable. Hence, _'@z is square integrable for all z,

which, by Datko Theorem, implies that Ua is exponentially stable.

\
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Fig. 1 Prototype Interconnected System
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Fig.2 Interconnected System with Loop Transformation
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Fig.3 Intereonnedted System with Loop Transformation
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Fig.4 Interconnected System considered in [24]
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Fig. 7 CircIe Test for Stability
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Fig. 12 Stability Margin for Example 5

83


